123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- #ifndef EIGEN_TEST_GPU_COMMON_H
- #define EIGEN_TEST_GPU_COMMON_H
- #ifdef EIGEN_USE_HIP
- #include <hip/hip_runtime.h>
- #include <hip/hip_runtime_api.h>
- #else
- #include <cuda.h>
- #include <cuda_runtime.h>
- #include <cuda_runtime_api.h>
- #endif
- #include <iostream>
- #define EIGEN_USE_GPU
- #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
- #if !defined(__CUDACC__) && !defined(__HIPCC__)
- dim3 threadIdx, blockDim, blockIdx;
- #endif
- template<typename Kernel, typename Input, typename Output>
- void run_on_cpu(const Kernel& ker, int n, const Input& in, Output& out)
- {
- for(int i=0; i<n; i++)
- ker(i, in.data(), out.data());
- }
- template<typename Kernel, typename Input, typename Output>
- __global__
- EIGEN_HIP_LAUNCH_BOUNDS_1024
- void run_on_gpu_meta_kernel(const Kernel ker, int n, const Input* in, Output* out)
- {
- int i = threadIdx.x + blockIdx.x*blockDim.x;
- if(i<n) {
- ker(i, in, out);
- }
- }
- template<typename Kernel, typename Input, typename Output>
- void run_on_gpu(const Kernel& ker, int n, const Input& in, Output& out)
- {
- typename Input::Scalar* d_in;
- typename Output::Scalar* d_out;
- std::ptrdiff_t in_bytes = in.size() * sizeof(typename Input::Scalar);
- std::ptrdiff_t out_bytes = out.size() * sizeof(typename Output::Scalar);
-
- gpuMalloc((void**)(&d_in), in_bytes);
- gpuMalloc((void**)(&d_out), out_bytes);
-
- gpuMemcpy(d_in, in.data(), in_bytes, gpuMemcpyHostToDevice);
- gpuMemcpy(d_out, out.data(), out_bytes, gpuMemcpyHostToDevice);
-
- // Simple and non-optimal 1D mapping assuming n is not too large
- // That's only for unit testing!
- dim3 Blocks(128);
- dim3 Grids( (n+int(Blocks.x)-1)/int(Blocks.x) );
- gpuDeviceSynchronize();
-
- #ifdef EIGEN_USE_HIP
- hipLaunchKernelGGL(HIP_KERNEL_NAME(run_on_gpu_meta_kernel<Kernel,
- typename std::decay<decltype(*d_in)>::type,
- typename std::decay<decltype(*d_out)>::type>),
- dim3(Grids), dim3(Blocks), 0, 0, ker, n, d_in, d_out);
- #else
- run_on_gpu_meta_kernel<<<Grids,Blocks>>>(ker, n, d_in, d_out);
- #endif
- // Pre-launch errors.
- gpuError_t err = gpuGetLastError();
- if (err != gpuSuccess) {
- printf("%s: %s\n", gpuGetErrorName(err), gpuGetErrorString(err));
- gpu_assert(false);
- }
-
- // Kernel execution errors.
- err = gpuDeviceSynchronize();
- if (err != gpuSuccess) {
- printf("%s: %s\n", gpuGetErrorName(err), gpuGetErrorString(err));
- gpu_assert(false);
- }
-
-
- // check inputs have not been modified
- gpuMemcpy(const_cast<typename Input::Scalar*>(in.data()), d_in, in_bytes, gpuMemcpyDeviceToHost);
- gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost);
-
- gpuFree(d_in);
- gpuFree(d_out);
- }
- template<typename Kernel, typename Input, typename Output>
- void run_and_compare_to_gpu(const Kernel& ker, int n, const Input& in, Output& out)
- {
- Input in_ref, in_gpu;
- Output out_ref, out_gpu;
- #if !defined(EIGEN_GPU_COMPILE_PHASE)
- in_ref = in_gpu = in;
- out_ref = out_gpu = out;
- #else
- EIGEN_UNUSED_VARIABLE(in);
- EIGEN_UNUSED_VARIABLE(out);
- #endif
- run_on_cpu (ker, n, in_ref, out_ref);
- run_on_gpu(ker, n, in_gpu, out_gpu);
- #if !defined(EIGEN_GPU_COMPILE_PHASE)
- VERIFY_IS_APPROX(in_ref, in_gpu);
- VERIFY_IS_APPROX(out_ref, out_gpu);
- #endif
- }
- struct compile_time_device_info {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const int* /*in*/, int* info) const
- {
- if (i == 0) {
- EIGEN_UNUSED_VARIABLE(info)
- #if defined(__CUDA_ARCH__)
- info[0] = int(__CUDA_ARCH__ +0);
- #endif
- #if defined(EIGEN_HIP_DEVICE_COMPILE)
- info[1] = int(EIGEN_HIP_DEVICE_COMPILE +0);
- #endif
- }
- }
- };
- void ei_test_init_gpu()
- {
- int device = 0;
- gpuDeviceProp_t deviceProp;
- gpuGetDeviceProperties(&deviceProp, device);
- ArrayXi dummy(1), info(10);
- info = -1;
- run_on_gpu(compile_time_device_info(),10,dummy,info);
- std::cout << "GPU compile-time info:\n";
-
- #ifdef EIGEN_CUDACC
- std::cout << " EIGEN_CUDACC: " << int(EIGEN_CUDACC) << "\n";
- #endif
-
- #ifdef EIGEN_CUDA_SDK_VER
- std::cout << " EIGEN_CUDA_SDK_VER: " << int(EIGEN_CUDA_SDK_VER) << "\n";
- #endif
- #ifdef EIGEN_COMP_NVCC
- std::cout << " EIGEN_COMP_NVCC: " << int(EIGEN_COMP_NVCC) << "\n";
- #endif
-
- #ifdef EIGEN_HIPCC
- std::cout << " EIGEN_HIPCC: " << int(EIGEN_HIPCC) << "\n";
- #endif
- std::cout << " EIGEN_CUDA_ARCH: " << info[0] << "\n";
- std::cout << " EIGEN_HIP_DEVICE_COMPILE: " << info[1] << "\n";
- std::cout << "GPU device info:\n";
- std::cout << " name: " << deviceProp.name << "\n";
- std::cout << " capability: " << deviceProp.major << "." << deviceProp.minor << "\n";
- std::cout << " multiProcessorCount: " << deviceProp.multiProcessorCount << "\n";
- std::cout << " maxThreadsPerMultiProcessor: " << deviceProp.maxThreadsPerMultiProcessor << "\n";
- std::cout << " warpSize: " << deviceProp.warpSize << "\n";
- std::cout << " regsPerBlock: " << deviceProp.regsPerBlock << "\n";
- std::cout << " concurrentKernels: " << deviceProp.concurrentKernels << "\n";
- std::cout << " clockRate: " << deviceProp.clockRate << "\n";
- std::cout << " canMapHostMemory: " << deviceProp.canMapHostMemory << "\n";
- std::cout << " computeMode: " << deviceProp.computeMode << "\n";
- }
- #endif // EIGEN_TEST_GPU_COMMON_H
|