123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- // workaround issue between gcc >= 4.7 and cuda 5.5
- #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
- #undef _GLIBCXX_ATOMIC_BUILTINS
- #undef _GLIBCXX_USE_INT128
- #endif
- #define EIGEN_TEST_NO_LONGDOUBLE
- #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
- #include "main.h"
- #include "gpu_common.h"
- // Check that dense modules can be properly parsed by nvcc
- #include <Eigen/Dense>
- // struct Foo{
- // EIGEN_DEVICE_FUNC
- // void operator()(int i, const float* mats, float* vecs) const {
- // using namespace Eigen;
- // // Matrix3f M(data);
- // // Vector3f x(data+9);
- // // Map<Vector3f>(data+9) = M.inverse() * x;
- // Matrix3f M(mats+i/16);
- // Vector3f x(vecs+i*3);
- // // using std::min;
- // // using std::sqrt;
- // Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x();
- // //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
- // }
- // };
- template<typename T>
- struct coeff_wise {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
- {
- using namespace Eigen;
- T x1(in+i);
- T x2(in+i+1);
- T x3(in+i+2);
- Map<T> res(out+i*T::MaxSizeAtCompileTime);
-
- res.array() += (in[0] * x1 + x2).array() * x3.array();
- }
- };
- template<typename T>
- struct complex_sqrt {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
- {
- using namespace Eigen;
- typedef typename T::Scalar ComplexType;
- typedef typename T::Scalar::value_type ValueType;
- const int num_special_inputs = 18;
-
- if (i == 0) {
- const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN();
- typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs;
- SpecialInputs special_in;
- special_in.setZero();
- int idx = 0;
- special_in[idx++] = ComplexType(0, 0);
- special_in[idx++] = ComplexType(-0, 0);
- special_in[idx++] = ComplexType(0, -0);
- special_in[idx++] = ComplexType(-0, -0);
- // GCC's fallback sqrt implementation fails for inf inputs.
- // It is called when _GLIBCXX_USE_C99_COMPLEX is false or if
- // clang includes the GCC header (which temporarily disables
- // _GLIBCXX_USE_C99_COMPLEX)
- #if !defined(_GLIBCXX_COMPLEX) || \
- (_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX))
- const ValueType inf = std::numeric_limits<ValueType>::infinity();
- special_in[idx++] = ComplexType(1.0, inf);
- special_in[idx++] = ComplexType(nan, inf);
- special_in[idx++] = ComplexType(1.0, -inf);
- special_in[idx++] = ComplexType(nan, -inf);
- special_in[idx++] = ComplexType(-inf, 1.0);
- special_in[idx++] = ComplexType(inf, 1.0);
- special_in[idx++] = ComplexType(-inf, -1.0);
- special_in[idx++] = ComplexType(inf, -1.0);
- special_in[idx++] = ComplexType(-inf, nan);
- special_in[idx++] = ComplexType(inf, nan);
- #endif
- special_in[idx++] = ComplexType(1.0, nan);
- special_in[idx++] = ComplexType(nan, 1.0);
- special_in[idx++] = ComplexType(nan, -1.0);
- special_in[idx++] = ComplexType(nan, nan);
-
- Map<SpecialInputs> special_out(out);
- special_out = special_in.cwiseSqrt();
- }
-
- T x1(in + i);
- Map<T> res(out + num_special_inputs + i*T::MaxSizeAtCompileTime);
- res = x1.cwiseSqrt();
- }
- };
- template<typename T>
- struct complex_operators {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
- {
- using namespace Eigen;
- typedef typename T::Scalar ComplexType;
- typedef typename T::Scalar::value_type ValueType;
- const int num_scalar_operators = 24;
- const int num_vector_operators = 23; // no unary + operator.
- int out_idx = i * (num_scalar_operators + num_vector_operators * T::MaxSizeAtCompileTime);
-
- // Scalar operators.
- const ComplexType a = in[i];
- const ComplexType b = in[i + 1];
-
- out[out_idx++] = +a;
- out[out_idx++] = -a;
-
- out[out_idx++] = a + b;
- out[out_idx++] = a + numext::real(b);
- out[out_idx++] = numext::real(a) + b;
- out[out_idx++] = a - b;
- out[out_idx++] = a - numext::real(b);
- out[out_idx++] = numext::real(a) - b;
- out[out_idx++] = a * b;
- out[out_idx++] = a * numext::real(b);
- out[out_idx++] = numext::real(a) * b;
- out[out_idx++] = a / b;
- out[out_idx++] = a / numext::real(b);
- out[out_idx++] = numext::real(a) / b;
-
- out[out_idx] = a; out[out_idx++] += b;
- out[out_idx] = a; out[out_idx++] -= b;
- out[out_idx] = a; out[out_idx++] *= b;
- out[out_idx] = a; out[out_idx++] /= b;
-
- const ComplexType true_value = ComplexType(ValueType(1), ValueType(0));
- const ComplexType false_value = ComplexType(ValueType(0), ValueType(0));
- out[out_idx++] = (a == b ? true_value : false_value);
- out[out_idx++] = (a == numext::real(b) ? true_value : false_value);
- out[out_idx++] = (numext::real(a) == b ? true_value : false_value);
- out[out_idx++] = (a != b ? true_value : false_value);
- out[out_idx++] = (a != numext::real(b) ? true_value : false_value);
- out[out_idx++] = (numext::real(a) != b ? true_value : false_value);
-
- // Vector versions.
- T x1(in + i);
- T x2(in + i + 1);
- const int res_size = T::MaxSizeAtCompileTime * num_scalar_operators;
- const int size = T::MaxSizeAtCompileTime;
- int block_idx = 0;
-
- Map<VectorX<ComplexType>> res(out + out_idx, res_size);
- res.segment(block_idx, size) = -x1;
- block_idx += size;
-
- res.segment(block_idx, size) = x1 + x2;
- block_idx += size;
- res.segment(block_idx, size) = x1 + x2.real();
- block_idx += size;
- res.segment(block_idx, size) = x1.real() + x2;
- block_idx += size;
- res.segment(block_idx, size) = x1 - x2;
- block_idx += size;
- res.segment(block_idx, size) = x1 - x2.real();
- block_idx += size;
- res.segment(block_idx, size) = x1.real() - x2;
- block_idx += size;
- res.segment(block_idx, size) = x1.array() * x2.array();
- block_idx += size;
- res.segment(block_idx, size) = x1.array() * x2.real().array();
- block_idx += size;
- res.segment(block_idx, size) = x1.real().array() * x2.array();
- block_idx += size;
- res.segment(block_idx, size) = x1.array() / x2.array();
- block_idx += size;
- res.segment(block_idx, size) = x1.array() / x2.real().array();
- block_idx += size;
- res.segment(block_idx, size) = x1.real().array() / x2.array();
- block_idx += size;
-
- res.segment(block_idx, size) = x1; res.segment(block_idx, size) += x2;
- block_idx += size;
- res.segment(block_idx, size) = x1; res.segment(block_idx, size) -= x2;
- block_idx += size;
- res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() *= x2.array();
- block_idx += size;
- res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() /= x2.array();
- block_idx += size;
- const T true_vector = T::Constant(true_value);
- const T false_vector = T::Constant(false_value);
- res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector);
- block_idx += size;
- // Mixing types in equality comparison does not work.
- // res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector);
- // block_idx += size;
- // res.segment(block_idx, size) = (x1.real() == x2 ? true_vector : false_vector);
- // block_idx += size;
- res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector);
- block_idx += size;
- // res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector);
- // block_idx += size;
- // res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector);
- // block_idx += size;
- }
- };
- template<typename T>
- struct replicate {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
- {
- using namespace Eigen;
- T x1(in+i);
- int step = x1.size() * 4;
- int stride = 3 * step;
-
- typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
- MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
- MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
- MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
- }
- };
- template<typename T>
- struct alloc_new_delete {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
- {
- int offset = 2*i*T::MaxSizeAtCompileTime;
- T* x = new T(in + offset);
- Eigen::Map<T> u(out + offset);
- u = *x;
- delete x;
-
- offset += T::MaxSizeAtCompileTime;
- T* y = new T[1];
- y[0] = T(in + offset);
- Eigen::Map<T> v(out + offset);
- v = y[0];
- delete[] y;
- }
- };
- template<typename T>
- struct redux {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
- {
- using namespace Eigen;
- int N = 10;
- T x1(in+i);
- out[i*N+0] = x1.minCoeff();
- out[i*N+1] = x1.maxCoeff();
- out[i*N+2] = x1.sum();
- out[i*N+3] = x1.prod();
- out[i*N+4] = x1.matrix().squaredNorm();
- out[i*N+5] = x1.matrix().norm();
- out[i*N+6] = x1.colwise().sum().maxCoeff();
- out[i*N+7] = x1.rowwise().maxCoeff().sum();
- out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
- }
- };
- template<typename T1, typename T2>
- struct prod_test {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
- {
- using namespace Eigen;
- typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
- T1 x1(in+i);
- T2 x2(in+i+1);
- Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
- res += in[i] * x1 * x2;
- }
- };
- template<typename T1, typename T2>
- struct diagonal {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
- {
- using namespace Eigen;
- T1 x1(in+i);
- Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
- res += x1.diagonal();
- }
- };
- template<typename T>
- struct eigenvalues_direct {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
- {
- using namespace Eigen;
- typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
- T M(in+i);
- Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
- T A = M*M.adjoint();
- SelfAdjointEigenSolver<T> eig;
- eig.computeDirect(A);
- res = eig.eigenvalues();
- }
- };
- template<typename T>
- struct eigenvalues {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
- {
- using namespace Eigen;
- typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
- T M(in+i);
- Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
- T A = M*M.adjoint();
- SelfAdjointEigenSolver<T> eig;
- eig.compute(A);
- res = eig.eigenvalues();
- }
- };
- template<typename T>
- struct matrix_inverse {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
- {
- using namespace Eigen;
- T M(in+i);
- Map<T> res(out+i*T::MaxSizeAtCompileTime);
- res = M.inverse();
- }
- };
- template<typename T>
- struct numeric_limits_test {
- EIGEN_DEVICE_FUNC
- void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
- {
- EIGEN_UNUSED_VARIABLE(in)
- int out_idx = i * 5;
- out[out_idx++] = numext::numeric_limits<float>::epsilon();
- out[out_idx++] = (numext::numeric_limits<float>::max)();
- out[out_idx++] = (numext::numeric_limits<float>::min)();
- out[out_idx++] = numext::numeric_limits<float>::infinity();
- out[out_idx++] = numext::numeric_limits<float>::quiet_NaN();
- }
- };
- template<typename Type1, typename Type2>
- bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only
- {
- if (a.rows() != b.rows()) {
- return false;
- }
- if (a.cols() != b.cols()) {
- return false;
- }
- for (Index r = 0; r < a.rows(); ++r) {
- for (Index c = 0; c < a.cols(); ++c) {
- if (a(r, c) != b(r, c)
- && !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c)))
- && !test_isApprox(a(r, c), b(r, c))) {
- return false;
- }
- }
- }
- return true;
- }
- template<typename Kernel, typename Input, typename Output>
- void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out)
- {
- Output out_ref, out_gpu;
- #if !defined(EIGEN_GPU_COMPILE_PHASE)
- out_ref = out_gpu = out;
- #else
- EIGEN_UNUSED_VARIABLE(in);
- EIGEN_UNUSED_VARIABLE(out);
- #endif
- run_on_cpu (ker, n, in, out_ref);
- run_on_gpu(ker, n, in, out_gpu);
- #if !defined(EIGEN_GPU_COMPILE_PHASE)
- verifyIsApproxWithInfsNans(out_ref, out_gpu);
- #endif
- }
- EIGEN_DECLARE_TEST(gpu_basic)
- {
- ei_test_init_gpu();
-
- int nthreads = 100;
- Eigen::VectorXf in, out;
- Eigen::VectorXcf cfin, cfout;
-
- #if !defined(EIGEN_GPU_COMPILE_PHASE)
- int data_size = nthreads * 512;
- in.setRandom(data_size);
- out.setConstant(data_size, -1);
- cfin.setRandom(data_size);
- cfout.setConstant(data_size, -1);
- #endif
-
- CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) );
- CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) );
- #if !defined(EIGEN_USE_HIP)
- // FIXME
- // These subtests result in a compile failure on the HIP platform
- //
- // eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error:
- // base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type'
- // (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor
- CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) );
- CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) );
- // HIP does not support new/delete on device.
- CALL_SUBTEST( run_and_compare_to_gpu(alloc_new_delete<Vector3f>(), nthreads, in, out) );
- #endif
-
- CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) );
- CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) );
-
- CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
- CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
-
- CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
- CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
- CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) );
- CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) );
- CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) );
-
- CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) );
- CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) );
- // Test std::complex.
- CALL_SUBTEST( run_and_compare_to_gpu(complex_operators<Vector3cf>(), nthreads, cfin, cfout) );
- CALL_SUBTEST( test_with_infs_nans(complex_sqrt<Vector3cf>(), nthreads, cfin, cfout) );
- // numeric_limits
- CALL_SUBTEST( test_with_infs_nans(numeric_limits_test<Vector3f>(), 1, in, out) );
- #if defined(__NVCC__)
- // FIXME
- // These subtests compiles only with nvcc and fail with HIPCC and clang-cuda
- CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) );
- typedef Matrix<float,6,6> Matrix6f;
- CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) );
- #endif
- }
|