123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
- // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/Geometry>
- #include <Eigen/LU>
- #include <Eigen/QR>
- template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
- {
- /* this test covers the following files:
- Hyperplane.h
- */
- using std::abs;
- const Index dim = _plane.dim();
- enum { Options = HyperplaneType::Options };
- typedef typename HyperplaneType::Scalar Scalar;
- typedef typename HyperplaneType::RealScalar RealScalar;
- typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
- typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
- HyperplaneType::AmbientDimAtCompileTime> MatrixType;
- VectorType p0 = VectorType::Random(dim);
- VectorType p1 = VectorType::Random(dim);
- VectorType n0 = VectorType::Random(dim).normalized();
- VectorType n1 = VectorType::Random(dim).normalized();
- HyperplaneType pl0(n0, p0);
- HyperplaneType pl1(n1, p1);
- HyperplaneType pl2 = pl1;
- Scalar s0 = internal::random<Scalar>();
- Scalar s1 = internal::random<Scalar>();
- VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) );
- VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) );
- if(numext::abs2(s0)>RealScalar(1e-6))
- VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0);
- else
- VERIFY_IS_MUCH_SMALLER_THAN( abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1) );
- VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) );
- VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1) );
- // transform
- if (!NumTraits<Scalar>::IsComplex)
- {
- MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ();
- DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
- Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
-
- while(scaling.diagonal().cwiseAbs().minCoeff()<RealScalar(1e-4)) scaling.diagonal() = VectorType::Random();
- pl2 = pl1;
- VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) );
- pl2 = pl1;
- VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) );
- pl2 = pl1;
- VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) );
- VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
- pl2 = pl1;
- VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation)
- .absDistance((rot*scaling*translation) * p1), Scalar(1) );
- VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
- pl2 = pl1;
- VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry)
- .absDistance((rot*translation) * p1), Scalar(1) );
- VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
- }
- // casting
- const int Dim = HyperplaneType::AmbientDimAtCompileTime;
- typedef typename GetDifferentType<Scalar>::type OtherScalar;
- Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>();
- VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1);
- Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>();
- VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1);
- }
- template<typename Scalar> void lines()
- {
- using std::abs;
- typedef Hyperplane<Scalar, 2> HLine;
- typedef ParametrizedLine<Scalar, 2> PLine;
- typedef Matrix<Scalar,2,1> Vector;
- typedef Matrix<Scalar,3,1> CoeffsType;
- for(int i = 0; i < 10; i++)
- {
- Vector center = Vector::Random();
- Vector u = Vector::Random();
- Vector v = Vector::Random();
- Scalar a = internal::random<Scalar>();
- while (abs(a-1) < Scalar(1e-4)) a = internal::random<Scalar>();
- while (u.norm() < Scalar(1e-4)) u = Vector::Random();
- while (v.norm() < Scalar(1e-4)) v = Vector::Random();
- HLine line_u = HLine::Through(center + u, center + a*u);
- HLine line_v = HLine::Through(center + v, center + a*v);
- // the line equations should be normalized so that a^2+b^2=1
- VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
- VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));
- Vector result = line_u.intersection(line_v);
- // the lines should intersect at the point we called "center"
- if(abs(a-1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized()))<Scalar(0.9))
- VERIFY_IS_APPROX(result, center);
- // check conversions between two types of lines
- PLine pl(line_u); // gcc 3.3 will crash if we don't name this variable.
- HLine line_u2(pl);
- CoeffsType converted_coeffs = line_u2.coeffs();
- if(line_u2.normal().dot(line_u.normal())<Scalar(0))
- converted_coeffs = -line_u2.coeffs();
- VERIFY(line_u.coeffs().isApprox(converted_coeffs));
- }
- }
- template<typename Scalar> void planes()
- {
- using std::abs;
- typedef Hyperplane<Scalar, 3> Plane;
- typedef Matrix<Scalar,3,1> Vector;
- for(int i = 0; i < 10; i++)
- {
- Vector v0 = Vector::Random();
- Vector v1(v0), v2(v0);
- if(internal::random<double>(0,1)>0.25)
- v1 += Vector::Random();
- if(internal::random<double>(0,1)>0.25)
- v2 += v1 * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
- if(internal::random<double>(0,1)>0.25)
- v2 += Vector::Random() * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
- Plane p0 = Plane::Through(v0, v1, v2);
- VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1));
- VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1));
- VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1));
- VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1));
- }
- }
- template<typename Scalar> void hyperplane_alignment()
- {
- typedef Hyperplane<Scalar,3,AutoAlign> Plane3a;
- typedef Hyperplane<Scalar,3,DontAlign> Plane3u;
- EIGEN_ALIGN_MAX Scalar array1[4];
- EIGEN_ALIGN_MAX Scalar array2[4];
- EIGEN_ALIGN_MAX Scalar array3[4+1];
- Scalar* array3u = array3+1;
- Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a;
- Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u;
- Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u;
-
- p1->coeffs().setRandom();
- *p2 = *p1;
- *p3 = *p1;
- VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
- VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
- }
- EIGEN_DECLARE_TEST(geo_hyperplane)
- {
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) );
- CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) );
- CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) );
- CALL_SUBTEST_2( hyperplane_alignment<float>() );
- CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) );
- CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) );
- CALL_SUBTEST_1( lines<float>() );
- CALL_SUBTEST_3( lines<double>() );
- CALL_SUBTEST_2( planes<float>() );
- CALL_SUBTEST_5( planes<double>() );
- }
- }
|