123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/Geometry>
- #include <Eigen/LU>
- #include <Eigen/SVD>
- template<typename Scalar>
- void verify_euler(const Matrix<Scalar,3,1>& ea, int i, int j, int k)
- {
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef AngleAxis<Scalar> AngleAxisx;
- using std::abs;
- Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k)));
- Vector3 eabis = m.eulerAngles(i, j, k);
- Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k)));
- VERIFY_IS_APPROX(m, mbis);
- /* If I==K, and ea[1]==0, then there no unique solution. */
- /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */
- if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
- VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
-
- // approx_or_less_than does not work for 0
- VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
- VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
- VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]);
- VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
- VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
- VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
- }
- template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
- {
- verify_euler(ea, 0,1,2);
- verify_euler(ea, 0,1,0);
- verify_euler(ea, 0,2,1);
- verify_euler(ea, 0,2,0);
- verify_euler(ea, 1,2,0);
- verify_euler(ea, 1,2,1);
- verify_euler(ea, 1,0,2);
- verify_euler(ea, 1,0,1);
- verify_euler(ea, 2,0,1);
- verify_euler(ea, 2,0,2);
- verify_euler(ea, 2,1,0);
- verify_euler(ea, 2,1,2);
- }
- template<typename Scalar> void eulerangles()
- {
- typedef Matrix<Scalar,3,3> Matrix3;
- typedef Matrix<Scalar,3,1> Vector3;
- typedef Array<Scalar,3,1> Array3;
- typedef Quaternion<Scalar> Quaternionx;
- typedef AngleAxis<Scalar> AngleAxisx;
- Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
- Quaternionx q1;
- q1 = AngleAxisx(a, Vector3::Random().normalized());
- Matrix3 m;
- m = q1;
-
- Vector3 ea = m.eulerAngles(0,1,2);
- check_all_var(ea);
- ea = m.eulerAngles(0,1,0);
- check_all_var(ea);
-
- // Check with purely random Quaternion:
- q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
- m = q1;
- ea = m.eulerAngles(0,1,2);
- check_all_var(ea);
- ea = m.eulerAngles(0,1,0);
- check_all_var(ea);
-
- // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
- ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
- check_all_var(ea);
-
- ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
- check_all_var(ea);
-
- ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
- check_all_var(ea);
-
- ea[1] = 0;
- check_all_var(ea);
-
- ea.head(2).setZero();
- check_all_var(ea);
-
- ea.setZero();
- check_all_var(ea);
- }
- EIGEN_DECLARE_TEST(geo_eulerangles)
- {
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( eulerangles<float>() );
- CALL_SUBTEST_2( eulerangles<double>() );
- }
- }
|