123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/Geometry>
- using namespace std;
- // NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers.
- // It seems that it is not needed anymore, but let's keep it here, just in case...
- template<typename T> EIGEN_DONT_INLINE
- void kill_extra_precision(T& /* x */) {
- // This one worked but triggered a warning:
- /* eigen_assert((void*)(&x) != (void*)0); */
- // An alternative could be:
- /* volatile T tmp = x; */
- /* x = tmp; */
- }
- template<typename BoxType> void alignedbox(const BoxType& box)
- {
- /* this test covers the following files:
- AlignedBox.h
- */
- typedef typename BoxType::Scalar Scalar;
- typedef NumTraits<Scalar> ScalarTraits;
- typedef typename ScalarTraits::Real RealScalar;
- typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
- const Index dim = box.dim();
- VectorType p0 = VectorType::Random(dim);
- VectorType p1 = VectorType::Random(dim);
- while( p1 == p0 ){
- p1 = VectorType::Random(dim); }
- RealScalar s1 = internal::random<RealScalar>(0,1);
- BoxType b0(dim);
- BoxType b1(VectorType::Random(dim),VectorType::Random(dim));
- BoxType b2;
- kill_extra_precision(b1);
- kill_extra_precision(p0);
- kill_extra_precision(p1);
- b0.extend(p0);
- b0.extend(p1);
- VERIFY(b0.contains(p0*s1+(Scalar(1)-s1)*p1));
- VERIFY(b0.contains(b0.center()));
- VERIFY_IS_APPROX(b0.center(),(p0+p1)/Scalar(2));
- (b2 = b0).extend(b1);
- VERIFY(b2.contains(b0));
- VERIFY(b2.contains(b1));
- VERIFY_IS_APPROX(b2.clamp(b0), b0);
- // intersection
- BoxType box1(VectorType::Random(dim));
- box1.extend(VectorType::Random(dim));
- BoxType box2(VectorType::Random(dim));
- box2.extend(VectorType::Random(dim));
- VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty());
- // alignment -- make sure there is no memory alignment assertion
- BoxType *bp0 = new BoxType(dim);
- BoxType *bp1 = new BoxType(dim);
- bp0->extend(*bp1);
- delete bp0;
- delete bp1;
- // sampling
- for( int i=0; i<10; ++i )
- {
- VectorType r = b0.sample();
- VERIFY(b0.contains(r));
- }
- }
- template<typename BoxType> void alignedboxTranslatable(const BoxType& box)
- {
- typedef typename BoxType::Scalar Scalar;
- typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
- typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
- typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;
- alignedbox(box);
- const VectorType Ones = VectorType::Ones();
- const VectorType UnitX = VectorType::UnitX();
- const Index dim = box.dim();
- // box((-1, -1, -1), (1, 1, 1))
- BoxType a(-Ones, Ones);
- VERIFY_IS_APPROX(a.sizes(), Ones * Scalar(2));
- BoxType b = a;
- VectorType translate = Ones;
- translate[0] = Scalar(2);
- b.translate(translate);
- // translate by (2, 1, 1) -> box((1, 0, 0), (3, 2, 2))
- VERIFY_IS_APPROX(b.sizes(), Ones * Scalar(2));
- VERIFY_IS_APPROX((b.min)(), UnitX);
- VERIFY_IS_APPROX((b.max)(), Ones * Scalar(2) + UnitX);
- // Test transform
- IsometryTransform tf = IsometryTransform::Identity();
- tf.translation() = -translate;
- BoxType c = b.transformed(tf);
- // translate by (-2, -1, -1) -> box((-1, -1, -1), (1, 1, 1))
- VERIFY_IS_APPROX(c.sizes(), a.sizes());
- VERIFY_IS_APPROX((c.min)(), (a.min)());
- VERIFY_IS_APPROX((c.max)(), (a.max)());
- c.transform(tf);
- // translate by (-2, -1, -1) -> box((-3, -2, -2), (-1, 0, 0))
- VERIFY_IS_APPROX(c.sizes(), a.sizes());
- VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) - UnitX);
- VERIFY_IS_APPROX((c.max)(), -UnitX);
- // Scaling
- AffineTransform atf = AffineTransform::Identity();
- atf.scale(Scalar(3));
- c.transform(atf);
- // scale by 3 -> box((-9, -6, -6), (-3, 0, 0))
- VERIFY_IS_APPROX(c.sizes(), Scalar(3) * a.sizes());
- VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-6) - UnitX * Scalar(3));
- VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(-3));
- atf = AffineTransform::Identity();
- atf.scale(Scalar(-3));
- c.transform(atf);
- // scale by -3 -> box((27, 18, 18), (9, 0, 0))
- VERIFY_IS_APPROX(c.sizes(), Scalar(9) * a.sizes());
- VERIFY_IS_APPROX((c.min)(), UnitX * Scalar(9));
- VERIFY_IS_APPROX((c.max)(), Ones * Scalar(18) + UnitX * Scalar(9));
- // Check identity transform within numerical precision.
- BoxType transformedC = c.transformed(IsometryTransform::Identity());
- VERIFY_IS_APPROX(transformedC, c);
- for (size_t i = 0; i < 10; ++i)
- {
- VectorType minCorner;
- VectorType maxCorner;
- for (Index d = 0; d < dim; ++d)
- {
- minCorner[d] = internal::random<Scalar>(-10,10);
- maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
- }
- c = BoxType(minCorner, maxCorner);
- translate = VectorType::Random();
- c.translate(translate);
- VERIFY_IS_APPROX((c.min)(), minCorner + translate);
- VERIFY_IS_APPROX((c.max)(), maxCorner + translate);
- }
- }
- template<typename Scalar, typename Rotation>
- Rotation rotate2D(Scalar angle) {
- return Rotation2D<Scalar>(angle);
- }
- template<typename Scalar, typename Rotation>
- Rotation rotate2DIntegral(typename NumTraits<Scalar>::NonInteger angle) {
- typedef typename NumTraits<Scalar>::NonInteger NonInteger;
- return Rotation2D<NonInteger>(angle).toRotationMatrix().
- template cast<Scalar>();
- }
- template<typename Scalar, typename Rotation>
- Rotation rotate3DZAxis(Scalar angle) {
- return AngleAxis<Scalar>(angle, Matrix<Scalar, 3, 1>(0, 0, 1));
- }
- template<typename Scalar, typename Rotation>
- Rotation rotate3DZAxisIntegral(typename NumTraits<Scalar>::NonInteger angle) {
- typedef typename NumTraits<Scalar>::NonInteger NonInteger;
- return AngleAxis<NonInteger>(angle, Matrix<NonInteger, 3, 1>(0, 0, 1)).
- toRotationMatrix().template cast<Scalar>();
- }
- template<typename Scalar, typename Rotation>
- Rotation rotate4DZWAxis(Scalar angle) {
- Rotation result = Matrix<Scalar, 4, 4>::Identity();
- result.block(0, 0, 3, 3) = rotate3DZAxis<Scalar, AngleAxisd>(angle).toRotationMatrix();
- return result;
- }
- template <typename MatrixType>
- MatrixType randomRotationMatrix()
- {
- // algorithm from
- // https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf
- const MatrixType rand = MatrixType::Random();
- const MatrixType q = rand.householderQr().householderQ();
- const JacobiSVD<MatrixType> svd = q.jacobiSvd(ComputeFullU | ComputeFullV);
- const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant();
- MatrixType diag = rand.Identity();
- diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det;
- const MatrixType rotation = svd.matrixU() * diag * svd.matrixV().transpose();
- return rotation;
- }
- template <typename Scalar, int Dim>
- Matrix<Scalar, Dim, (1<<Dim)> boxGetCorners(const Matrix<Scalar, Dim, 1>& min_, const Matrix<Scalar, Dim, 1>& max_)
- {
- Matrix<Scalar, Dim, (1<<Dim) > result;
- for(Index i=0; i<(1<<Dim); ++i)
- {
- for(Index j=0; j<Dim; ++j)
- result(j,i) = (i & (1<<j)) ? min_(j) : max_(j);
- }
- return result;
- }
- template<typename BoxType, typename Rotation> void alignedboxRotatable(
- const BoxType& box,
- Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/))
- {
- alignedboxTranslatable(box);
- typedef typename BoxType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::NonInteger NonInteger;
- typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
- typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
- typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;
- const VectorType Zero = VectorType::Zero();
- const VectorType Ones = VectorType::Ones();
- const VectorType UnitX = VectorType::UnitX();
- const VectorType UnitY = VectorType::UnitY();
- // this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions
- const VectorType UnitZ = Ones - UnitX - UnitY;
- // in this kind of comments the 3D case values will be illustrated
- // box((-1, -1, -1), (1, 1, 1))
- BoxType a(-Ones, Ones);
- // to allow templating this test for both 2D and 3D cases, we always set all
- // but the first coordinate to the same value; so basically 3D case works as
- // if you were looking at the scene from top
- VectorType minPoint = -2 * Ones;
- minPoint[0] = -3;
- VectorType maxPoint = Zero;
- maxPoint[0] = -1;
- BoxType c(minPoint, maxPoint);
- // box((-3, -2, -2), (-1, 0, 0))
- IsometryTransform tf2 = IsometryTransform::Identity();
- // for some weird reason the following statement has to be put separate from
- // the following rotate call, otherwise precision problems arise...
- Rotation rot = rotate(NonInteger(EIGEN_PI));
- tf2.rotate(rot);
- c.transform(tf2);
- // rotate by 180 deg around origin -> box((1, 0, -2), (3, 2, 0))
- VERIFY_IS_APPROX(c.sizes(), a.sizes());
- VERIFY_IS_APPROX((c.min)(), UnitX - UnitZ * Scalar(2));
- VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(3) + UnitY * Scalar(2));
- rot = rotate(NonInteger(EIGEN_PI / 2));
- tf2.setIdentity();
- tf2.rotate(rot);
- c.transform(tf2);
- // rotate by 90 deg around origin -> box((-2, 1, -2), (0, 3, 0))
- VERIFY_IS_APPROX(c.sizes(), a.sizes());
- VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) + UnitY * Scalar(3));
- VERIFY_IS_APPROX((c.max)(), UnitY * Scalar(3));
- // box((-1, -1, -1), (1, 1, 1))
- AffineTransform atf = AffineTransform::Identity();
- atf.linearExt()(0, 1) = Scalar(1);
- c = BoxType(-Ones, Ones);
- c.transform(atf);
- // 45 deg shear in x direction -> box((-2, -1, -1), (2, 1, 1))
- VERIFY_IS_APPROX(c.sizes(), Ones * Scalar(2) + UnitX * Scalar(2));
- VERIFY_IS_APPROX((c.min)(), -Ones - UnitX);
- VERIFY_IS_APPROX((c.max)(), Ones + UnitX);
- }
- template<typename BoxType, typename Rotation> void alignedboxNonIntegralRotatable(
- const BoxType& box,
- Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/))
- {
- alignedboxRotatable(box, rotate);
- typedef typename BoxType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::NonInteger NonInteger;
- enum { Dim = BoxType::AmbientDimAtCompileTime };
- typedef Matrix<Scalar, Dim, 1> VectorType;
- typedef Matrix<Scalar, Dim, (1 << Dim)> CornersType;
- typedef Transform<Scalar, Dim, Isometry> IsometryTransform;
- typedef Transform<Scalar, Dim, Affine> AffineTransform;
- const Index dim = box.dim();
- const VectorType Zero = VectorType::Zero();
- const VectorType Ones = VectorType::Ones();
- VectorType minPoint = -2 * Ones;
- minPoint[1] = 1;
- VectorType maxPoint = Zero;
- maxPoint[1] = 3;
- BoxType c(minPoint, maxPoint);
- // ((-2, 1, -2), (0, 3, 0))
- VectorType cornerBL = (c.min)();
- VectorType cornerTR = (c.max)();
- VectorType cornerBR = (c.min)(); cornerBR[0] = cornerTR[0];
- VectorType cornerTL = (c.max)(); cornerTL[0] = cornerBL[0];
- NonInteger angle = NonInteger(EIGEN_PI/3);
- Rotation rot = rotate(angle);
- IsometryTransform tf2;
- tf2.setIdentity();
- tf2.rotate(rot);
- c.transform(tf2);
- // rotate by 60 deg -> box((-3.59, -1.23, -2), (-0.86, 1.5, 0))
- cornerBL = tf2 * cornerBL;
- cornerBR = tf2 * cornerBR;
- cornerTL = tf2 * cornerTL;
- cornerTR = tf2 * cornerTR;
- VectorType minCorner = Ones * Scalar(-2);
- VectorType maxCorner = Zero;
- minCorner[0] = (min)((min)(cornerBL[0], cornerBR[0]), (min)(cornerTL[0], cornerTR[0]));
- maxCorner[0] = (max)((max)(cornerBL[0], cornerBR[0]), (max)(cornerTL[0], cornerTR[0]));
- minCorner[1] = (min)((min)(cornerBL[1], cornerBR[1]), (min)(cornerTL[1], cornerTR[1]));
- maxCorner[1] = (max)((max)(cornerBL[1], cornerBR[1]), (max)(cornerTL[1], cornerTR[1]));
- for (Index d = 2; d < dim; ++d)
- VERIFY_IS_APPROX(c.sizes()[d], Scalar(2));
- VERIFY_IS_APPROX((c.min)(), minCorner);
- VERIFY_IS_APPROX((c.max)(), maxCorner);
- VectorType minCornerValue = Ones * Scalar(-2);
- VectorType maxCornerValue = Zero;
- minCornerValue[0] = Scalar(Scalar(-sqrt(2*2 + 3*3)) * Scalar(cos(Scalar(atan(2.0/3.0)) - angle/2)));
- minCornerValue[1] = Scalar(Scalar(-sqrt(1*1 + 2*2)) * Scalar(sin(Scalar(atan(2.0/1.0)) - angle/2)));
- maxCornerValue[0] = Scalar(-sin(angle));
- maxCornerValue[1] = Scalar(3 * cos(angle));
- VERIFY_IS_APPROX((c.min)(), minCornerValue);
- VERIFY_IS_APPROX((c.max)(), maxCornerValue);
- // randomized test - translate and rotate the box and compare to a box made of transformed vertices
- for (size_t i = 0; i < 10; ++i)
- {
- for (Index d = 0; d < dim; ++d)
- {
- minCorner[d] = internal::random<Scalar>(-10,10);
- maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
- }
- c = BoxType(minCorner, maxCorner);
- CornersType corners = boxGetCorners(minCorner, maxCorner);
- typename AffineTransform::LinearMatrixType rotation =
- randomRotationMatrix<typename AffineTransform::LinearMatrixType>();
- tf2.setIdentity();
- tf2.rotate(rotation);
- tf2.translate(VectorType::Random());
- c.transform(tf2);
- corners = tf2 * corners;
- minCorner = corners.rowwise().minCoeff();
- maxCorner = corners.rowwise().maxCoeff();
- VERIFY_IS_APPROX((c.min)(), minCorner);
- VERIFY_IS_APPROX((c.max)(), maxCorner);
- }
- // randomized test - transform the box with a random affine matrix and compare to a box made of transformed vertices
- for (size_t i = 0; i < 10; ++i)
- {
- for (Index d = 0; d < dim; ++d)
- {
- minCorner[d] = internal::random<Scalar>(-10,10);
- maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
- }
- c = BoxType(minCorner, maxCorner);
- CornersType corners = boxGetCorners(minCorner, maxCorner);
- AffineTransform atf = AffineTransform::Identity();
- atf.linearExt() = AffineTransform::LinearPart::Random();
- atf.translate(VectorType::Random());
- c.transform(atf);
- corners = atf * corners;
- minCorner = corners.rowwise().minCoeff();
- maxCorner = corners.rowwise().maxCoeff();
- VERIFY_IS_APPROX((c.min)(), minCorner);
- VERIFY_IS_APPROX((c.max)(), maxCorner);
- }
- }
- template<typename BoxType>
- void alignedboxCastTests(const BoxType& box)
- {
- // casting
- typedef typename BoxType::Scalar Scalar;
- typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
- const Index dim = box.dim();
- VectorType p0 = VectorType::Random(dim);
- VectorType p1 = VectorType::Random(dim);
- BoxType b0(dim);
- b0.extend(p0);
- b0.extend(p1);
- const int Dim = BoxType::AmbientDimAtCompileTime;
- typedef typename GetDifferentType<Scalar>::type OtherScalar;
- AlignedBox<OtherScalar,Dim> hp1f = b0.template cast<OtherScalar>();
- VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),b0);
- AlignedBox<Scalar,Dim> hp1d = b0.template cast<Scalar>();
- VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),b0);
- }
- void specificTest1()
- {
- Vector2f m; m << -1.0f, -2.0f;
- Vector2f M; M << 1.0f, 5.0f;
- typedef AlignedBox2f BoxType;
- BoxType box( m, M );
- Vector2f sides = M-m;
- VERIFY_IS_APPROX(sides, box.sizes() );
- VERIFY_IS_APPROX(sides[1], box.sizes()[1] );
- VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() );
- VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );
- VERIFY_IS_APPROX( 14.0f, box.volume() );
- VERIFY_IS_APPROX( 53.0f, box.diagonal().squaredNorm() );
- VERIFY_IS_APPROX( std::sqrt( 53.0f ), box.diagonal().norm() );
- VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeft ) );
- VERIFY_IS_APPROX( M, box.corner( BoxType::TopRight ) );
- Vector2f bottomRight; bottomRight << M[0], m[1];
- Vector2f topLeft; topLeft << m[0], M[1];
- VERIFY_IS_APPROX( bottomRight, box.corner( BoxType::BottomRight ) );
- VERIFY_IS_APPROX( topLeft, box.corner( BoxType::TopLeft ) );
- }
- void specificTest2()
- {
- Vector3i m; m << -1, -2, 0;
- Vector3i M; M << 1, 5, 3;
- typedef AlignedBox3i BoxType;
- BoxType box( m, M );
- Vector3i sides = M-m;
- VERIFY_IS_APPROX(sides, box.sizes() );
- VERIFY_IS_APPROX(sides[1], box.sizes()[1] );
- VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() );
- VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );
- VERIFY_IS_APPROX( 42, box.volume() );
- VERIFY_IS_APPROX( 62, box.diagonal().squaredNorm() );
- VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeftFloor ) );
- VERIFY_IS_APPROX( M, box.corner( BoxType::TopRightCeil ) );
- Vector3i bottomRightFloor; bottomRightFloor << M[0], m[1], m[2];
- Vector3i topLeftFloor; topLeftFloor << m[0], M[1], m[2];
- VERIFY_IS_APPROX( bottomRightFloor, box.corner( BoxType::BottomRightFloor ) );
- VERIFY_IS_APPROX( topLeftFloor, box.corner( BoxType::TopLeftFloor ) );
- }
- EIGEN_DECLARE_TEST(geo_alignedbox)
- {
- for(int i = 0; i < g_repeat; i++)
- {
- CALL_SUBTEST_1( (alignedboxNonIntegralRotatable<AlignedBox2f, Rotation2Df>(AlignedBox2f(), &rotate2D)) );
- CALL_SUBTEST_2( alignedboxCastTests(AlignedBox2f()) );
- CALL_SUBTEST_3( (alignedboxNonIntegralRotatable<AlignedBox3f, AngleAxisf>(AlignedBox3f(), &rotate3DZAxis)) );
- CALL_SUBTEST_4( alignedboxCastTests(AlignedBox3f()) );
- CALL_SUBTEST_5( (alignedboxNonIntegralRotatable<AlignedBox4d, Matrix4d>(AlignedBox4d(), &rotate4DZWAxis)) );
- CALL_SUBTEST_6( alignedboxCastTests(AlignedBox4d()) );
- CALL_SUBTEST_7( alignedboxTranslatable(AlignedBox1d()) );
- CALL_SUBTEST_8( alignedboxCastTests(AlignedBox1d()) );
- CALL_SUBTEST_9( alignedboxTranslatable(AlignedBox1i()) );
- CALL_SUBTEST_10( (alignedboxRotatable<AlignedBox2i, Matrix2i>(AlignedBox2i(), &rotate2DIntegral<int, Matrix2i>)) );
- CALL_SUBTEST_11( (alignedboxRotatable<AlignedBox3i, Matrix3i>(AlignedBox3i(), &rotate3DZAxisIntegral<int, Matrix3i>)) );
- CALL_SUBTEST_14( alignedbox(AlignedBox<double,Dynamic>(4)) );
- }
- CALL_SUBTEST_12( specificTest1() );
- CALL_SUBTEST_13( specificTest2() );
- }
|