| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531 | // This file is part of Eigen, a lightweight C++ template library// for linear algebra.//// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>//// This Source Code Form is subject to the terms of the Mozilla// Public License v. 2.0. If a copy of the MPL was not distributed// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.#include "main.h"#include <Eigen/Geometry>using namespace std;// NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers.// It seems that it is not needed anymore, but let's keep it here, just in case...template<typename T> EIGEN_DONT_INLINEvoid kill_extra_precision(T& /* x */) {  // This one worked but triggered a warning:  /* eigen_assert((void*)(&x) != (void*)0); */  // An alternative could be:  /* volatile T tmp = x; */  /* x = tmp; */}template<typename BoxType> void alignedbox(const BoxType& box){  /* this test covers the following files:     AlignedBox.h  */  typedef typename BoxType::Scalar Scalar;  typedef NumTraits<Scalar> ScalarTraits;  typedef typename ScalarTraits::Real RealScalar;  typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;  const Index dim = box.dim();  VectorType p0 = VectorType::Random(dim);  VectorType p1 = VectorType::Random(dim);  while( p1 == p0 ){      p1 =  VectorType::Random(dim); }  RealScalar s1 = internal::random<RealScalar>(0,1);  BoxType b0(dim);  BoxType b1(VectorType::Random(dim),VectorType::Random(dim));  BoxType b2;  kill_extra_precision(b1);  kill_extra_precision(p0);  kill_extra_precision(p1);  b0.extend(p0);  b0.extend(p1);  VERIFY(b0.contains(p0*s1+(Scalar(1)-s1)*p1));  VERIFY(b0.contains(b0.center()));  VERIFY_IS_APPROX(b0.center(),(p0+p1)/Scalar(2));  (b2 = b0).extend(b1);  VERIFY(b2.contains(b0));  VERIFY(b2.contains(b1));  VERIFY_IS_APPROX(b2.clamp(b0), b0);  // intersection  BoxType box1(VectorType::Random(dim));  box1.extend(VectorType::Random(dim));  BoxType box2(VectorType::Random(dim));  box2.extend(VectorType::Random(dim));  VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty());  // alignment -- make sure there is no memory alignment assertion  BoxType *bp0 = new BoxType(dim);  BoxType *bp1 = new BoxType(dim);  bp0->extend(*bp1);  delete bp0;  delete bp1;  // sampling  for( int i=0; i<10; ++i )  {      VectorType r = b0.sample();      VERIFY(b0.contains(r));  }}template<typename BoxType> void alignedboxTranslatable(const BoxType& box){  typedef typename BoxType::Scalar Scalar;  typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;  typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;  typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;  alignedbox(box);  const VectorType Ones = VectorType::Ones();  const VectorType UnitX = VectorType::UnitX();  const Index dim = box.dim();  // box((-1, -1, -1), (1, 1, 1))  BoxType a(-Ones, Ones);  VERIFY_IS_APPROX(a.sizes(), Ones * Scalar(2));  BoxType b = a;  VectorType translate = Ones;  translate[0] = Scalar(2);  b.translate(translate);  // translate by (2, 1, 1) -> box((1, 0, 0), (3, 2, 2))  VERIFY_IS_APPROX(b.sizes(), Ones * Scalar(2));  VERIFY_IS_APPROX((b.min)(), UnitX);  VERIFY_IS_APPROX((b.max)(), Ones * Scalar(2) + UnitX);  // Test transform  IsometryTransform tf = IsometryTransform::Identity();  tf.translation() = -translate;  BoxType c = b.transformed(tf);  // translate by (-2, -1, -1) -> box((-1, -1, -1), (1, 1, 1))  VERIFY_IS_APPROX(c.sizes(), a.sizes());  VERIFY_IS_APPROX((c.min)(), (a.min)());  VERIFY_IS_APPROX((c.max)(), (a.max)());  c.transform(tf);  // translate by (-2, -1, -1) -> box((-3, -2, -2), (-1, 0, 0))  VERIFY_IS_APPROX(c.sizes(), a.sizes());  VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) - UnitX);  VERIFY_IS_APPROX((c.max)(), -UnitX);  // Scaling  AffineTransform atf = AffineTransform::Identity();  atf.scale(Scalar(3));  c.transform(atf);  // scale by 3 -> box((-9, -6, -6), (-3, 0, 0))  VERIFY_IS_APPROX(c.sizes(), Scalar(3) * a.sizes());  VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-6) - UnitX * Scalar(3));  VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(-3));  atf = AffineTransform::Identity();  atf.scale(Scalar(-3));  c.transform(atf);  // scale by -3 -> box((27, 18, 18), (9, 0, 0))  VERIFY_IS_APPROX(c.sizes(), Scalar(9) * a.sizes());  VERIFY_IS_APPROX((c.min)(), UnitX * Scalar(9));  VERIFY_IS_APPROX((c.max)(), Ones * Scalar(18) + UnitX * Scalar(9));  // Check identity transform within numerical precision.  BoxType transformedC = c.transformed(IsometryTransform::Identity());  VERIFY_IS_APPROX(transformedC, c);  for (size_t i = 0; i < 10; ++i)  {    VectorType minCorner;    VectorType maxCorner;    for (Index d = 0; d < dim; ++d)    {      minCorner[d] = internal::random<Scalar>(-10,10);      maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);    }    c = BoxType(minCorner, maxCorner);    translate = VectorType::Random();    c.translate(translate);    VERIFY_IS_APPROX((c.min)(), minCorner + translate);    VERIFY_IS_APPROX((c.max)(), maxCorner + translate);  }}template<typename Scalar, typename Rotation>Rotation rotate2D(Scalar angle) {  return Rotation2D<Scalar>(angle);}template<typename Scalar, typename Rotation>Rotation rotate2DIntegral(typename NumTraits<Scalar>::NonInteger angle) {  typedef typename NumTraits<Scalar>::NonInteger NonInteger;  return Rotation2D<NonInteger>(angle).toRotationMatrix().      template cast<Scalar>();}template<typename Scalar, typename Rotation>Rotation rotate3DZAxis(Scalar angle) {  return AngleAxis<Scalar>(angle, Matrix<Scalar, 3, 1>(0, 0, 1));}template<typename Scalar, typename Rotation>Rotation rotate3DZAxisIntegral(typename NumTraits<Scalar>::NonInteger angle) {  typedef typename NumTraits<Scalar>::NonInteger NonInteger;  return AngleAxis<NonInteger>(angle, Matrix<NonInteger, 3, 1>(0, 0, 1)).      toRotationMatrix().template cast<Scalar>();}template<typename Scalar, typename Rotation>Rotation rotate4DZWAxis(Scalar angle) {  Rotation result = Matrix<Scalar, 4, 4>::Identity();  result.block(0, 0, 3, 3) = rotate3DZAxis<Scalar, AngleAxisd>(angle).toRotationMatrix();  return result;}template <typename MatrixType>MatrixType randomRotationMatrix(){  // algorithm from  // https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf  const MatrixType rand = MatrixType::Random();  const MatrixType q = rand.householderQr().householderQ();  const JacobiSVD<MatrixType> svd = q.jacobiSvd(ComputeFullU | ComputeFullV);  const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant();  MatrixType diag = rand.Identity();  diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det;  const MatrixType rotation = svd.matrixU() * diag * svd.matrixV().transpose();  return rotation;}template <typename Scalar, int Dim>Matrix<Scalar, Dim, (1<<Dim)> boxGetCorners(const Matrix<Scalar, Dim, 1>& min_, const Matrix<Scalar, Dim, 1>& max_){  Matrix<Scalar, Dim, (1<<Dim) > result;  for(Index i=0; i<(1<<Dim); ++i)  {    for(Index j=0; j<Dim; ++j)      result(j,i) = (i & (1<<j)) ? min_(j) : max_(j);  }  return result;}template<typename BoxType, typename Rotation> void alignedboxRotatable(    const BoxType& box,    Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/)){  alignedboxTranslatable(box);  typedef typename BoxType::Scalar Scalar;  typedef typename NumTraits<Scalar>::NonInteger NonInteger;  typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;  typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;  typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;  const VectorType Zero = VectorType::Zero();  const VectorType Ones = VectorType::Ones();  const VectorType UnitX = VectorType::UnitX();  const VectorType UnitY = VectorType::UnitY();  // this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions  const VectorType UnitZ = Ones - UnitX - UnitY;  // in this kind of comments the 3D case values will be illustrated  // box((-1, -1, -1), (1, 1, 1))  BoxType a(-Ones, Ones);  // to allow templating this test for both 2D and 3D cases, we always set all  // but the first coordinate to the same value; so basically 3D case works as  // if you were looking at the scene from top  VectorType minPoint = -2 * Ones;  minPoint[0] = -3;  VectorType maxPoint = Zero;  maxPoint[0] = -1;  BoxType c(minPoint, maxPoint);  // box((-3, -2, -2), (-1, 0, 0))  IsometryTransform tf2 = IsometryTransform::Identity();  // for some weird reason the following statement has to be put separate from  // the following rotate call, otherwise precision problems arise...  Rotation rot = rotate(NonInteger(EIGEN_PI));  tf2.rotate(rot);  c.transform(tf2);  // rotate by 180 deg around origin -> box((1, 0, -2), (3, 2, 0))  VERIFY_IS_APPROX(c.sizes(), a.sizes());  VERIFY_IS_APPROX((c.min)(), UnitX - UnitZ * Scalar(2));  VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(3) + UnitY * Scalar(2));  rot = rotate(NonInteger(EIGEN_PI / 2));  tf2.setIdentity();  tf2.rotate(rot);  c.transform(tf2);  // rotate by 90 deg around origin ->  box((-2, 1, -2), (0, 3, 0))  VERIFY_IS_APPROX(c.sizes(), a.sizes());  VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) + UnitY * Scalar(3));  VERIFY_IS_APPROX((c.max)(), UnitY * Scalar(3));  // box((-1, -1, -1), (1, 1, 1))  AffineTransform atf = AffineTransform::Identity();  atf.linearExt()(0, 1) = Scalar(1);  c = BoxType(-Ones, Ones);  c.transform(atf);  // 45 deg shear in x direction -> box((-2, -1, -1), (2, 1, 1))  VERIFY_IS_APPROX(c.sizes(), Ones * Scalar(2) + UnitX * Scalar(2));  VERIFY_IS_APPROX((c.min)(), -Ones - UnitX);  VERIFY_IS_APPROX((c.max)(), Ones + UnitX);}template<typename BoxType, typename Rotation> void alignedboxNonIntegralRotatable(    const BoxType& box,    Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/)){  alignedboxRotatable(box, rotate);  typedef typename BoxType::Scalar Scalar;  typedef typename NumTraits<Scalar>::NonInteger NonInteger;  enum { Dim = BoxType::AmbientDimAtCompileTime };  typedef Matrix<Scalar, Dim, 1> VectorType;  typedef Matrix<Scalar, Dim, (1 << Dim)> CornersType;  typedef Transform<Scalar, Dim, Isometry> IsometryTransform;  typedef Transform<Scalar, Dim, Affine> AffineTransform;  const Index dim = box.dim();  const VectorType Zero = VectorType::Zero();  const VectorType Ones = VectorType::Ones();  VectorType minPoint = -2 * Ones;  minPoint[1] = 1;  VectorType maxPoint = Zero;  maxPoint[1] = 3;  BoxType c(minPoint, maxPoint);  // ((-2, 1, -2), (0, 3, 0))  VectorType cornerBL = (c.min)();  VectorType cornerTR = (c.max)();  VectorType cornerBR = (c.min)(); cornerBR[0] = cornerTR[0];  VectorType cornerTL = (c.max)(); cornerTL[0] = cornerBL[0];  NonInteger angle = NonInteger(EIGEN_PI/3);  Rotation rot = rotate(angle);  IsometryTransform tf2;  tf2.setIdentity();  tf2.rotate(rot);  c.transform(tf2);  // rotate by 60 deg ->  box((-3.59, -1.23, -2), (-0.86, 1.5, 0))  cornerBL = tf2 * cornerBL;  cornerBR = tf2 * cornerBR;  cornerTL = tf2 * cornerTL;  cornerTR = tf2 * cornerTR;  VectorType minCorner = Ones * Scalar(-2);  VectorType maxCorner = Zero;  minCorner[0] = (min)((min)(cornerBL[0], cornerBR[0]), (min)(cornerTL[0], cornerTR[0]));  maxCorner[0] = (max)((max)(cornerBL[0], cornerBR[0]), (max)(cornerTL[0], cornerTR[0]));  minCorner[1] = (min)((min)(cornerBL[1], cornerBR[1]), (min)(cornerTL[1], cornerTR[1]));  maxCorner[1] = (max)((max)(cornerBL[1], cornerBR[1]), (max)(cornerTL[1], cornerTR[1]));  for (Index d = 2; d < dim; ++d)    VERIFY_IS_APPROX(c.sizes()[d], Scalar(2));  VERIFY_IS_APPROX((c.min)(), minCorner);  VERIFY_IS_APPROX((c.max)(), maxCorner);  VectorType minCornerValue = Ones * Scalar(-2);  VectorType maxCornerValue = Zero;  minCornerValue[0] = Scalar(Scalar(-sqrt(2*2 + 3*3)) * Scalar(cos(Scalar(atan(2.0/3.0)) - angle/2)));  minCornerValue[1] = Scalar(Scalar(-sqrt(1*1 + 2*2)) * Scalar(sin(Scalar(atan(2.0/1.0)) - angle/2)));  maxCornerValue[0] = Scalar(-sin(angle));  maxCornerValue[1] = Scalar(3 * cos(angle));  VERIFY_IS_APPROX((c.min)(), minCornerValue);  VERIFY_IS_APPROX((c.max)(), maxCornerValue);  // randomized test - translate and rotate the box and compare to a box made of transformed vertices  for (size_t i = 0; i < 10; ++i)  {    for (Index d = 0; d < dim; ++d)    {      minCorner[d] = internal::random<Scalar>(-10,10);      maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);    }    c = BoxType(minCorner, maxCorner);    CornersType corners = boxGetCorners(minCorner, maxCorner);    typename AffineTransform::LinearMatrixType rotation =        randomRotationMatrix<typename AffineTransform::LinearMatrixType>();    tf2.setIdentity();    tf2.rotate(rotation);    tf2.translate(VectorType::Random());    c.transform(tf2);    corners = tf2 * corners;    minCorner = corners.rowwise().minCoeff();    maxCorner = corners.rowwise().maxCoeff();    VERIFY_IS_APPROX((c.min)(), minCorner);    VERIFY_IS_APPROX((c.max)(), maxCorner);  }  // randomized test - transform the box with a random affine matrix and compare to a box made of transformed vertices  for (size_t i = 0; i < 10; ++i)  {    for (Index d = 0; d < dim; ++d)    {      minCorner[d] = internal::random<Scalar>(-10,10);      maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);    }    c = BoxType(minCorner, maxCorner);    CornersType corners = boxGetCorners(minCorner, maxCorner);    AffineTransform atf = AffineTransform::Identity();    atf.linearExt() = AffineTransform::LinearPart::Random();    atf.translate(VectorType::Random());    c.transform(atf);    corners = atf * corners;    minCorner = corners.rowwise().minCoeff();    maxCorner = corners.rowwise().maxCoeff();    VERIFY_IS_APPROX((c.min)(), minCorner);    VERIFY_IS_APPROX((c.max)(), maxCorner);  }}template<typename BoxType>void alignedboxCastTests(const BoxType& box){  // casting  typedef typename BoxType::Scalar Scalar;  typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;  const Index dim = box.dim();  VectorType p0 = VectorType::Random(dim);  VectorType p1 = VectorType::Random(dim);  BoxType b0(dim);  b0.extend(p0);  b0.extend(p1);  const int Dim = BoxType::AmbientDimAtCompileTime;  typedef typename GetDifferentType<Scalar>::type OtherScalar;  AlignedBox<OtherScalar,Dim> hp1f = b0.template cast<OtherScalar>();  VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),b0);  AlignedBox<Scalar,Dim> hp1d = b0.template cast<Scalar>();  VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),b0);}void specificTest1(){    Vector2f m; m << -1.0f, -2.0f;    Vector2f M; M <<  1.0f,  5.0f;    typedef AlignedBox2f  BoxType;    BoxType box( m, M );    Vector2f sides = M-m;    VERIFY_IS_APPROX(sides, box.sizes() );    VERIFY_IS_APPROX(sides[1], box.sizes()[1] );    VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() );    VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );    VERIFY_IS_APPROX( 14.0f, box.volume() );    VERIFY_IS_APPROX( 53.0f, box.diagonal().squaredNorm() );    VERIFY_IS_APPROX( std::sqrt( 53.0f ), box.diagonal().norm() );    VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeft ) );    VERIFY_IS_APPROX( M, box.corner( BoxType::TopRight ) );    Vector2f bottomRight; bottomRight << M[0], m[1];    Vector2f topLeft; topLeft << m[0], M[1];    VERIFY_IS_APPROX( bottomRight, box.corner( BoxType::BottomRight ) );    VERIFY_IS_APPROX( topLeft, box.corner( BoxType::TopLeft ) );}void specificTest2(){    Vector3i m; m << -1, -2, 0;    Vector3i M; M <<  1,  5, 3;    typedef AlignedBox3i  BoxType;    BoxType box( m, M );    Vector3i sides = M-m;    VERIFY_IS_APPROX(sides, box.sizes() );    VERIFY_IS_APPROX(sides[1], box.sizes()[1] );    VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() );    VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );    VERIFY_IS_APPROX( 42, box.volume() );    VERIFY_IS_APPROX( 62, box.diagonal().squaredNorm() );    VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeftFloor ) );    VERIFY_IS_APPROX( M, box.corner( BoxType::TopRightCeil ) );    Vector3i bottomRightFloor; bottomRightFloor << M[0], m[1], m[2];    Vector3i topLeftFloor; topLeftFloor << m[0], M[1], m[2];    VERIFY_IS_APPROX( bottomRightFloor, box.corner( BoxType::BottomRightFloor ) );    VERIFY_IS_APPROX( topLeftFloor, box.corner( BoxType::TopLeftFloor ) );}EIGEN_DECLARE_TEST(geo_alignedbox){  for(int i = 0; i < g_repeat; i++)  {    CALL_SUBTEST_1( (alignedboxNonIntegralRotatable<AlignedBox2f, Rotation2Df>(AlignedBox2f(), &rotate2D)) );    CALL_SUBTEST_2( alignedboxCastTests(AlignedBox2f()) );    CALL_SUBTEST_3( (alignedboxNonIntegralRotatable<AlignedBox3f, AngleAxisf>(AlignedBox3f(), &rotate3DZAxis)) );    CALL_SUBTEST_4( alignedboxCastTests(AlignedBox3f()) );    CALL_SUBTEST_5( (alignedboxNonIntegralRotatable<AlignedBox4d, Matrix4d>(AlignedBox4d(), &rotate4DZWAxis)) );    CALL_SUBTEST_6( alignedboxCastTests(AlignedBox4d()) );    CALL_SUBTEST_7( alignedboxTranslatable(AlignedBox1d()) );    CALL_SUBTEST_8( alignedboxCastTests(AlignedBox1d()) );    CALL_SUBTEST_9( alignedboxTranslatable(AlignedBox1i()) );    CALL_SUBTEST_10( (alignedboxRotatable<AlignedBox2i, Matrix2i>(AlignedBox2i(), &rotate2DIntegral<int, Matrix2i>)) );    CALL_SUBTEST_11( (alignedboxRotatable<AlignedBox3i, Matrix3i>(AlignedBox3i(), &rotate3DZAxisIntegral<int, Matrix3i>)) );    CALL_SUBTEST_14( alignedbox(AlignedBox<double,Dynamic>(4)) );  }  CALL_SUBTEST_12( specificTest1() );  CALL_SUBTEST_13( specificTest2() );}
 |