evaluators.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. #include "main.h"
  2. namespace Eigen {
  3. template<typename Lhs,typename Rhs>
  4. const Product<Lhs,Rhs>
  5. prod(const Lhs& lhs, const Rhs& rhs)
  6. {
  7. return Product<Lhs,Rhs>(lhs,rhs);
  8. }
  9. template<typename Lhs,typename Rhs>
  10. const Product<Lhs,Rhs,LazyProduct>
  11. lazyprod(const Lhs& lhs, const Rhs& rhs)
  12. {
  13. return Product<Lhs,Rhs,LazyProduct>(lhs,rhs);
  14. }
  15. template<typename DstXprType, typename SrcXprType>
  16. EIGEN_STRONG_INLINE
  17. DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src)
  18. {
  19. call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
  20. return dst.const_cast_derived();
  21. }
  22. template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
  23. EIGEN_STRONG_INLINE
  24. const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src)
  25. {
  26. call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
  27. return dst.expression();
  28. }
  29. template<typename DstXprType, typename SrcXprType>
  30. EIGEN_STRONG_INLINE
  31. DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src)
  32. {
  33. #ifdef EIGEN_NO_AUTOMATIC_RESIZING
  34. eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
  35. : (dst.rows() == src.rows() && dst.cols() == src.cols())))
  36. && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
  37. #else
  38. dst.const_cast_derived().resizeLike(src.derived());
  39. #endif
  40. call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
  41. return dst.const_cast_derived();
  42. }
  43. template<typename DstXprType, typename SrcXprType>
  44. void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  45. {
  46. typedef typename DstXprType::Scalar Scalar;
  47. call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar,typename SrcXprType::Scalar>());
  48. }
  49. template<typename DstXprType, typename SrcXprType>
  50. void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  51. {
  52. typedef typename DstXprType::Scalar Scalar;
  53. call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar,typename SrcXprType::Scalar>());
  54. }
  55. template<typename DstXprType, typename SrcXprType>
  56. void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  57. {
  58. typedef typename DstXprType::Scalar Scalar;
  59. call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar,typename SrcXprType::Scalar>());
  60. }
  61. template<typename DstXprType, typename SrcXprType>
  62. void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  63. {
  64. typedef typename DstXprType::Scalar Scalar;
  65. call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar,typename SrcXprType::Scalar>());
  66. }
  67. template<typename DstXprType, typename SrcXprType>
  68. void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  69. {
  70. typedef typename DstXprType::Scalar Scalar;
  71. call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>());
  72. }
  73. namespace internal {
  74. template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
  75. EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
  76. {
  77. call_assignment_no_alias(dst.expression(), src, func);
  78. }
  79. template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
  80. EIGEN_DEVICE_FUNC void call_restricted_packet_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
  81. {
  82. call_restricted_packet_assignment_no_alias(dst.expression(), src, func);
  83. }
  84. }
  85. }
  86. template<typename XprType> long get_cost(const XprType& ) { return Eigen::internal::evaluator<XprType>::CoeffReadCost; }
  87. using namespace std;
  88. #define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval());
  89. #define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval());
  90. EIGEN_DECLARE_TEST(evaluators)
  91. {
  92. // Testing Matrix evaluator and Transpose
  93. Vector2d v = Vector2d::Random();
  94. const Vector2d v_const(v);
  95. Vector2d v2;
  96. RowVector2d w;
  97. VERIFY_IS_APPROX_EVALUATOR(v2, v);
  98. VERIFY_IS_APPROX_EVALUATOR(v2, v_const);
  99. // Testing Transpose
  100. VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue
  101. VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose());
  102. copy_using_evaluator(w.transpose(), v); // Transpose as lvalue
  103. VERIFY_IS_APPROX(w,v.transpose().eval());
  104. copy_using_evaluator(w.transpose(), v_const);
  105. VERIFY_IS_APPROX(w,v_const.transpose().eval());
  106. // Testing Array evaluator
  107. {
  108. ArrayXXf a(2,3);
  109. ArrayXXf b(3,2);
  110. a << 1,2,3, 4,5,6;
  111. const ArrayXXf a_const(a);
  112. VERIFY_IS_APPROX_EVALUATOR(b, a.transpose());
  113. VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose());
  114. // Testing CwiseNullaryOp evaluator
  115. copy_using_evaluator(w, RowVector2d::Random());
  116. VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ...
  117. VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero());
  118. VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3));
  119. // mix CwiseNullaryOp and transpose
  120. VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose());
  121. }
  122. {
  123. // test product expressions
  124. int s = internal::random<int>(1,100);
  125. MatrixXf a(s,s), b(s,s), c(s,s), d(s,s);
  126. a.setRandom();
  127. b.setRandom();
  128. c.setRandom();
  129. d.setRandom();
  130. VERIFY_IS_APPROX_EVALUATOR(d, (a + b));
  131. VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose());
  132. VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b);
  133. VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b);
  134. VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c);
  135. VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b);
  136. VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose());
  137. VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c);
  138. // check that prod works even with aliasing present
  139. c = a*a;
  140. copy_using_evaluator(a, prod(a,a));
  141. VERIFY_IS_APPROX(a,c);
  142. // check compound assignment of products
  143. d = c;
  144. add_assign_using_evaluator(c.noalias(), prod(a,b));
  145. d.noalias() += a*b;
  146. VERIFY_IS_APPROX(c, d);
  147. d = c;
  148. subtract_assign_using_evaluator(c.noalias(), prod(a,b));
  149. d.noalias() -= a*b;
  150. VERIFY_IS_APPROX(c, d);
  151. }
  152. {
  153. // test product with all possible sizes
  154. int s = internal::random<int>(1,100);
  155. Matrix<float, 1, 1> m11, res11; m11.setRandom(1,1);
  156. Matrix<float, 1, 4> m14, res14; m14.setRandom(1,4);
  157. Matrix<float, 1,Dynamic> m1X, res1X; m1X.setRandom(1,s);
  158. Matrix<float, 4, 1> m41, res41; m41.setRandom(4,1);
  159. Matrix<float, 4, 4> m44, res44; m44.setRandom(4,4);
  160. Matrix<float, 4,Dynamic> m4X, res4X; m4X.setRandom(4,s);
  161. Matrix<float,Dynamic, 1> mX1, resX1; mX1.setRandom(s,1);
  162. Matrix<float,Dynamic, 4> mX4, resX4; mX4.setRandom(s,4);
  163. Matrix<float,Dynamic,Dynamic> mXX, resXX; mXX.setRandom(s,s);
  164. VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11);
  165. VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41);
  166. VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1);
  167. VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14);
  168. VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44);
  169. VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4);
  170. VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X);
  171. VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X);
  172. VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX);
  173. VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11);
  174. VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41);
  175. VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1);
  176. VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14);
  177. VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44);
  178. VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4);
  179. VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X);
  180. VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X);
  181. VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX);
  182. VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11);
  183. VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41);
  184. VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1);
  185. VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14);
  186. VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44);
  187. VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4);
  188. VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X);
  189. VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X);
  190. VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX);
  191. }
  192. {
  193. ArrayXXf a(2,3);
  194. ArrayXXf b(3,2);
  195. a << 1,2,3, 4,5,6;
  196. const ArrayXXf a_const(a);
  197. // this does not work because Random is eval-before-nested:
  198. // copy_using_evaluator(w, Vector2d::Random().transpose());
  199. // test CwiseUnaryOp
  200. VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v);
  201. VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose());
  202. VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose());
  203. VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose());
  204. // test CwiseBinaryOp
  205. VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones());
  206. VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3)));
  207. // dynamic matrices and arrays
  208. MatrixXd mat1(6,6), mat2(6,6);
  209. VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6));
  210. VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
  211. copy_using_evaluator(mat2.transpose(), mat1);
  212. VERIFY_IS_APPROX(mat2.transpose(), mat1);
  213. ArrayXXd arr1(6,6), arr2(6,6);
  214. VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0));
  215. VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
  216. // test automatic resizing
  217. mat2.resize(3,3);
  218. VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
  219. arr2.resize(9,9);
  220. VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
  221. // test direct traversal
  222. Matrix3f m3;
  223. Array33f a3;
  224. VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary
  225. // TODO: find a way to test direct traversal with array
  226. VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose
  227. VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary
  228. VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary
  229. VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2)); // block
  230. // test linear traversal
  231. VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary
  232. VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array
  233. VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose
  234. VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary
  235. VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary
  236. // test inner vectorization
  237. Matrix4f m4, m4src = Matrix4f::Random();
  238. Array44f a4, a4src = Matrix4f::Random();
  239. VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix
  240. VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array
  241. VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose
  242. // TODO: find out why Matrix4f::Zero() does not allow inner vectorization
  243. VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary
  244. VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary
  245. // test linear vectorization
  246. MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6);
  247. ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6);
  248. VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix
  249. VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array
  250. VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose
  251. VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary
  252. VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary
  253. VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary
  254. // test blocks and slice vectorization
  255. VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0)));
  256. VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6));
  257. Matrix4f m4ref = m4;
  258. copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2));
  259. m4ref.block(1, 1, 2, 3) = m3.bottomRows(2);
  260. VERIFY_IS_APPROX(m4, m4ref);
  261. mX.setIdentity(20,20);
  262. MatrixXf mXref = MatrixXf::Identity(20,20);
  263. mXsrc = MatrixXf::Random(9,12);
  264. copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc);
  265. mXref.block(4, 4, 9, 12) = mXsrc;
  266. VERIFY_IS_APPROX(mX, mXref);
  267. // test Map
  268. const float raw[3] = {1,2,3};
  269. float buffer[3] = {0,0,0};
  270. Vector3f v3;
  271. Array3f a3f;
  272. VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw));
  273. VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw));
  274. Vector3f::Map(buffer) = 2*v3;
  275. VERIFY(buffer[0] == 2);
  276. VERIFY(buffer[1] == 4);
  277. VERIFY(buffer[2] == 6);
  278. // test CwiseUnaryView
  279. mat1.setRandom();
  280. mat2.setIdentity();
  281. MatrixXcd matXcd(6,6), matXcd_ref(6,6);
  282. copy_using_evaluator(matXcd.real(), mat1);
  283. copy_using_evaluator(matXcd.imag(), mat2);
  284. matXcd_ref.real() = mat1;
  285. matXcd_ref.imag() = mat2;
  286. VERIFY_IS_APPROX(matXcd, matXcd_ref);
  287. // test Select
  288. VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc));
  289. // test Replicate
  290. mXsrc = MatrixXf::Random(6, 6);
  291. VectorXf vX = VectorXf::Random(6);
  292. mX.resize(6, 6);
  293. VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX);
  294. matXcd.resize(12, 12);
  295. VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2));
  296. VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>()));
  297. // test partial reductions
  298. VectorXd vec1(6);
  299. VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum());
  300. VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose());
  301. // test MatrixWrapper and ArrayWrapper
  302. mat1.setRandom(6,6);
  303. arr1.setRandom(6,6);
  304. VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix());
  305. VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array());
  306. VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix());
  307. VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2);
  308. mat2.array() = arr1 * arr1;
  309. VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix());
  310. arr2.matrix() = MatrixXd::Identity(6,6);
  311. VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array());
  312. // test Reverse
  313. VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse());
  314. VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse());
  315. VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse());
  316. arr2.reverse() = arr1;
  317. VERIFY_IS_APPROX(arr2, arr1.reverse());
  318. mat2.array() = mat1.array().reverse();
  319. VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse());
  320. // test Diagonal
  321. VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal());
  322. vec1.resize(5);
  323. VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1));
  324. VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>());
  325. vec1.setRandom();
  326. mat2 = mat1;
  327. copy_using_evaluator(mat1.diagonal(1), vec1);
  328. mat2.diagonal(1) = vec1;
  329. VERIFY_IS_APPROX(mat1, mat2);
  330. copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1));
  331. mat2.diagonal<-1>() = mat2.diagonal(1);
  332. VERIFY_IS_APPROX(mat1, mat2);
  333. }
  334. {
  335. // test swapping
  336. MatrixXd mat1, mat2, mat1ref, mat2ref;
  337. mat1ref = mat1 = MatrixXd::Random(6, 6);
  338. mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6);
  339. swap_using_evaluator(mat1, mat2);
  340. mat1ref.swap(mat2ref);
  341. VERIFY_IS_APPROX(mat1, mat1ref);
  342. VERIFY_IS_APPROX(mat2, mat2ref);
  343. swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3));
  344. mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3));
  345. VERIFY_IS_APPROX(mat1, mat1ref);
  346. VERIFY_IS_APPROX(mat2, mat2ref);
  347. swap_using_evaluator(mat1.row(2), mat2.col(3).transpose());
  348. mat1.row(2).swap(mat2.col(3).transpose());
  349. VERIFY_IS_APPROX(mat1, mat1ref);
  350. VERIFY_IS_APPROX(mat2, mat2ref);
  351. }
  352. {
  353. // test compound assignment
  354. const Matrix4d mat_const = Matrix4d::Random();
  355. Matrix4d mat, mat_ref;
  356. mat = mat_ref = Matrix4d::Identity();
  357. add_assign_using_evaluator(mat, mat_const);
  358. mat_ref += mat_const;
  359. VERIFY_IS_APPROX(mat, mat_ref);
  360. subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2));
  361. mat_ref.row(1) -= 2*mat_ref.row(2);
  362. VERIFY_IS_APPROX(mat, mat_ref);
  363. const ArrayXXf arr_const = ArrayXXf::Random(5,3);
  364. ArrayXXf arr, arr_ref;
  365. arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5);
  366. multiply_assign_using_evaluator(arr, arr_const);
  367. arr_ref *= arr_const;
  368. VERIFY_IS_APPROX(arr, arr_ref);
  369. divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1);
  370. arr_ref.row(1) /= (arr_ref.row(2) + 1);
  371. VERIFY_IS_APPROX(arr, arr_ref);
  372. }
  373. {
  374. // test triangular shapes
  375. MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6);
  376. A.setRandom();B.setRandom();
  377. VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>()));
  378. A.setRandom();B.setRandom();
  379. VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>()));
  380. A.setRandom();B.setRandom();
  381. VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>()));
  382. A.setRandom();B.setRandom();
  383. C = B; C.triangularView<Upper>() = A;
  384. copy_using_evaluator(B.triangularView<Upper>(), A);
  385. VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)");
  386. A.setRandom();B.setRandom();
  387. C = B; C.triangularView<Lower>() = A.triangularView<Lower>();
  388. copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>());
  389. VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())");
  390. A.setRandom();B.setRandom();
  391. C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose();
  392. copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose());
  393. VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())");
  394. A.setRandom();B.setRandom(); C = B; D = A;
  395. C.triangularView<Upper>().swap(D.triangularView<Upper>());
  396. swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>());
  397. VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())");
  398. VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A));
  399. VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A));
  400. }
  401. {
  402. // test diagonal shapes
  403. VectorXd d = VectorXd::Random(6);
  404. MatrixXd A = MatrixXd::Random(6,6), B(6,6);
  405. A.setRandom();B.setRandom();
  406. VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A));
  407. VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal()));
  408. }
  409. {
  410. // test CoeffReadCost
  411. Matrix4d a, b;
  412. VERIFY_IS_EQUAL( get_cost(a), 1 );
  413. VERIFY_IS_EQUAL( get_cost(a+b), 3);
  414. VERIFY_IS_EQUAL( get_cost(2*a+b), 4);
  415. VERIFY_IS_EQUAL( get_cost(a*b), 1);
  416. VERIFY_IS_EQUAL( get_cost(a.lazyProduct(b)), 15);
  417. VERIFY_IS_EQUAL( get_cost(a*(a*b)), 1);
  418. VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a*b)), 15);
  419. VERIFY_IS_EQUAL( get_cost(a*(a+b)), 1);
  420. VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a+b)), 15);
  421. }
  422. // regression test for PR 544 and bug 1622 (introduced in #71609c4)
  423. {
  424. // test restricted_packet_assignment with an unaligned destination
  425. const size_t M = 2;
  426. const size_t K = 2;
  427. const size_t N = 5;
  428. float *destMem = new float[(M*N) + 1];
  429. float *dest = (internal::UIntPtr(destMem)%EIGEN_MAX_ALIGN_BYTES) == 0 ? destMem+1 : destMem;
  430. const Matrix<float, Dynamic, Dynamic, RowMajor> a = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(M, K);
  431. const Matrix<float, Dynamic, Dynamic, RowMajor> b = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(K, N);
  432. Map<Matrix<float, Dynamic, Dynamic, RowMajor> > z(dest, M, N);;
  433. Product<Matrix<float, Dynamic, Dynamic, RowMajor>, Matrix<float, Dynamic, Dynamic, RowMajor>, LazyProduct> tmp(a,b);
  434. internal::call_restricted_packet_assignment(z.noalias(), tmp.derived(), internal::assign_op<float, float>());
  435. VERIFY_IS_APPROX(z, a*b);
  436. delete[] destMem;
  437. }
  438. }