123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525 |
- #include "main.h"
- namespace Eigen {
- template<typename Lhs,typename Rhs>
- const Product<Lhs,Rhs>
- prod(const Lhs& lhs, const Rhs& rhs)
- {
- return Product<Lhs,Rhs>(lhs,rhs);
- }
- template<typename Lhs,typename Rhs>
- const Product<Lhs,Rhs,LazyProduct>
- lazyprod(const Lhs& lhs, const Rhs& rhs)
- {
- return Product<Lhs,Rhs,LazyProduct>(lhs,rhs);
- }
-
- template<typename DstXprType, typename SrcXprType>
- EIGEN_STRONG_INLINE
- DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src)
- {
- call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
- return dst.const_cast_derived();
- }
-
- template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
- EIGEN_STRONG_INLINE
- const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src)
- {
- call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
- return dst.expression();
- }
-
- template<typename DstXprType, typename SrcXprType>
- EIGEN_STRONG_INLINE
- DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src)
- {
- #ifdef EIGEN_NO_AUTOMATIC_RESIZING
- eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
- : (dst.rows() == src.rows() && dst.cols() == src.cols())))
- && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
- #else
- dst.const_cast_derived().resizeLike(src.derived());
- #endif
-
- call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
- return dst.const_cast_derived();
- }
- template<typename DstXprType, typename SrcXprType>
- void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
- {
- typedef typename DstXprType::Scalar Scalar;
- call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar,typename SrcXprType::Scalar>());
- }
- template<typename DstXprType, typename SrcXprType>
- void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
- {
- typedef typename DstXprType::Scalar Scalar;
- call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar,typename SrcXprType::Scalar>());
- }
- template<typename DstXprType, typename SrcXprType>
- void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
- {
- typedef typename DstXprType::Scalar Scalar;
- call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar,typename SrcXprType::Scalar>());
- }
- template<typename DstXprType, typename SrcXprType>
- void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
- {
- typedef typename DstXprType::Scalar Scalar;
- call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar,typename SrcXprType::Scalar>());
- }
-
- template<typename DstXprType, typename SrcXprType>
- void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
- {
- typedef typename DstXprType::Scalar Scalar;
- call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>());
- }
- namespace internal {
- template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
- EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
- {
- call_assignment_no_alias(dst.expression(), src, func);
- }
- template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
- EIGEN_DEVICE_FUNC void call_restricted_packet_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
- {
- call_restricted_packet_assignment_no_alias(dst.expression(), src, func);
- }
- }
-
- }
- template<typename XprType> long get_cost(const XprType& ) { return Eigen::internal::evaluator<XprType>::CoeffReadCost; }
- using namespace std;
- #define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval());
- #define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval());
- EIGEN_DECLARE_TEST(evaluators)
- {
- // Testing Matrix evaluator and Transpose
- Vector2d v = Vector2d::Random();
- const Vector2d v_const(v);
- Vector2d v2;
- RowVector2d w;
- VERIFY_IS_APPROX_EVALUATOR(v2, v);
- VERIFY_IS_APPROX_EVALUATOR(v2, v_const);
- // Testing Transpose
- VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue
- VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose());
- copy_using_evaluator(w.transpose(), v); // Transpose as lvalue
- VERIFY_IS_APPROX(w,v.transpose().eval());
- copy_using_evaluator(w.transpose(), v_const);
- VERIFY_IS_APPROX(w,v_const.transpose().eval());
- // Testing Array evaluator
- {
- ArrayXXf a(2,3);
- ArrayXXf b(3,2);
- a << 1,2,3, 4,5,6;
- const ArrayXXf a_const(a);
- VERIFY_IS_APPROX_EVALUATOR(b, a.transpose());
- VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose());
- // Testing CwiseNullaryOp evaluator
- copy_using_evaluator(w, RowVector2d::Random());
- VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ...
- VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero());
- VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3));
-
- // mix CwiseNullaryOp and transpose
- VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose());
- }
- {
- // test product expressions
- int s = internal::random<int>(1,100);
- MatrixXf a(s,s), b(s,s), c(s,s), d(s,s);
- a.setRandom();
- b.setRandom();
- c.setRandom();
- d.setRandom();
- VERIFY_IS_APPROX_EVALUATOR(d, (a + b));
- VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose());
- VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b);
- VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b);
- VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c);
- VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b);
- VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose());
- VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c);
- // check that prod works even with aliasing present
- c = a*a;
- copy_using_evaluator(a, prod(a,a));
- VERIFY_IS_APPROX(a,c);
- // check compound assignment of products
- d = c;
- add_assign_using_evaluator(c.noalias(), prod(a,b));
- d.noalias() += a*b;
- VERIFY_IS_APPROX(c, d);
- d = c;
- subtract_assign_using_evaluator(c.noalias(), prod(a,b));
- d.noalias() -= a*b;
- VERIFY_IS_APPROX(c, d);
- }
- {
- // test product with all possible sizes
- int s = internal::random<int>(1,100);
- Matrix<float, 1, 1> m11, res11; m11.setRandom(1,1);
- Matrix<float, 1, 4> m14, res14; m14.setRandom(1,4);
- Matrix<float, 1,Dynamic> m1X, res1X; m1X.setRandom(1,s);
- Matrix<float, 4, 1> m41, res41; m41.setRandom(4,1);
- Matrix<float, 4, 4> m44, res44; m44.setRandom(4,4);
- Matrix<float, 4,Dynamic> m4X, res4X; m4X.setRandom(4,s);
- Matrix<float,Dynamic, 1> mX1, resX1; mX1.setRandom(s,1);
- Matrix<float,Dynamic, 4> mX4, resX4; mX4.setRandom(s,4);
- Matrix<float,Dynamic,Dynamic> mXX, resXX; mXX.setRandom(s,s);
- VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11);
- VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41);
- VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1);
- VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14);
- VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44);
- VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4);
- VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X);
- VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X);
- VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX);
- VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11);
- VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41);
- VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1);
- VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14);
- VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44);
- VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4);
- VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X);
- VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X);
- VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX);
- VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11);
- VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41);
- VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1);
- VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14);
- VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44);
- VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4);
- VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X);
- VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X);
- VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX);
- }
- {
- ArrayXXf a(2,3);
- ArrayXXf b(3,2);
- a << 1,2,3, 4,5,6;
- const ArrayXXf a_const(a);
-
- // this does not work because Random is eval-before-nested:
- // copy_using_evaluator(w, Vector2d::Random().transpose());
- // test CwiseUnaryOp
- VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v);
- VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose());
- VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose());
- VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose());
- // test CwiseBinaryOp
- VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones());
- VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3)));
- // dynamic matrices and arrays
- MatrixXd mat1(6,6), mat2(6,6);
- VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6));
- VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
- copy_using_evaluator(mat2.transpose(), mat1);
- VERIFY_IS_APPROX(mat2.transpose(), mat1);
- ArrayXXd arr1(6,6), arr2(6,6);
- VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0));
- VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
-
- // test automatic resizing
- mat2.resize(3,3);
- VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
- arr2.resize(9,9);
- VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
- // test direct traversal
- Matrix3f m3;
- Array33f a3;
- VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary
- // TODO: find a way to test direct traversal with array
- VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose
- VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary
- VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary
- VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2)); // block
- // test linear traversal
- VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary
- VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array
- VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose
- VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary
- VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary
- // test inner vectorization
- Matrix4f m4, m4src = Matrix4f::Random();
- Array44f a4, a4src = Matrix4f::Random();
- VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix
- VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array
- VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose
- // TODO: find out why Matrix4f::Zero() does not allow inner vectorization
- VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary
- VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary
- // test linear vectorization
- MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6);
- ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6);
- VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix
- VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array
- VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose
- VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary
- VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary
- VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary
- // test blocks and slice vectorization
- VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0)));
- VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6));
- Matrix4f m4ref = m4;
- copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2));
- m4ref.block(1, 1, 2, 3) = m3.bottomRows(2);
- VERIFY_IS_APPROX(m4, m4ref);
- mX.setIdentity(20,20);
- MatrixXf mXref = MatrixXf::Identity(20,20);
- mXsrc = MatrixXf::Random(9,12);
- copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc);
- mXref.block(4, 4, 9, 12) = mXsrc;
- VERIFY_IS_APPROX(mX, mXref);
- // test Map
- const float raw[3] = {1,2,3};
- float buffer[3] = {0,0,0};
- Vector3f v3;
- Array3f a3f;
- VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw));
- VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw));
- Vector3f::Map(buffer) = 2*v3;
- VERIFY(buffer[0] == 2);
- VERIFY(buffer[1] == 4);
- VERIFY(buffer[2] == 6);
- // test CwiseUnaryView
- mat1.setRandom();
- mat2.setIdentity();
- MatrixXcd matXcd(6,6), matXcd_ref(6,6);
- copy_using_evaluator(matXcd.real(), mat1);
- copy_using_evaluator(matXcd.imag(), mat2);
- matXcd_ref.real() = mat1;
- matXcd_ref.imag() = mat2;
- VERIFY_IS_APPROX(matXcd, matXcd_ref);
- // test Select
- VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc));
- // test Replicate
- mXsrc = MatrixXf::Random(6, 6);
- VectorXf vX = VectorXf::Random(6);
- mX.resize(6, 6);
- VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX);
- matXcd.resize(12, 12);
- VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2));
- VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>()));
- // test partial reductions
- VectorXd vec1(6);
- VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum());
- VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose());
- // test MatrixWrapper and ArrayWrapper
- mat1.setRandom(6,6);
- arr1.setRandom(6,6);
- VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix());
- VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array());
- VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix());
- VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2);
- mat2.array() = arr1 * arr1;
- VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix());
- arr2.matrix() = MatrixXd::Identity(6,6);
- VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array());
- // test Reverse
- VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse());
- VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse());
- VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse());
- arr2.reverse() = arr1;
- VERIFY_IS_APPROX(arr2, arr1.reverse());
- mat2.array() = mat1.array().reverse();
- VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse());
- // test Diagonal
- VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal());
- vec1.resize(5);
- VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1));
- VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>());
- vec1.setRandom();
- mat2 = mat1;
- copy_using_evaluator(mat1.diagonal(1), vec1);
- mat2.diagonal(1) = vec1;
- VERIFY_IS_APPROX(mat1, mat2);
- copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1));
- mat2.diagonal<-1>() = mat2.diagonal(1);
- VERIFY_IS_APPROX(mat1, mat2);
- }
-
- {
- // test swapping
- MatrixXd mat1, mat2, mat1ref, mat2ref;
- mat1ref = mat1 = MatrixXd::Random(6, 6);
- mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6);
- swap_using_evaluator(mat1, mat2);
- mat1ref.swap(mat2ref);
- VERIFY_IS_APPROX(mat1, mat1ref);
- VERIFY_IS_APPROX(mat2, mat2ref);
- swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3));
- mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3));
- VERIFY_IS_APPROX(mat1, mat1ref);
- VERIFY_IS_APPROX(mat2, mat2ref);
- swap_using_evaluator(mat1.row(2), mat2.col(3).transpose());
- mat1.row(2).swap(mat2.col(3).transpose());
- VERIFY_IS_APPROX(mat1, mat1ref);
- VERIFY_IS_APPROX(mat2, mat2ref);
- }
- {
- // test compound assignment
- const Matrix4d mat_const = Matrix4d::Random();
- Matrix4d mat, mat_ref;
- mat = mat_ref = Matrix4d::Identity();
- add_assign_using_evaluator(mat, mat_const);
- mat_ref += mat_const;
- VERIFY_IS_APPROX(mat, mat_ref);
- subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2));
- mat_ref.row(1) -= 2*mat_ref.row(2);
- VERIFY_IS_APPROX(mat, mat_ref);
- const ArrayXXf arr_const = ArrayXXf::Random(5,3);
- ArrayXXf arr, arr_ref;
- arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5);
- multiply_assign_using_evaluator(arr, arr_const);
- arr_ref *= arr_const;
- VERIFY_IS_APPROX(arr, arr_ref);
- divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1);
- arr_ref.row(1) /= (arr_ref.row(2) + 1);
- VERIFY_IS_APPROX(arr, arr_ref);
- }
-
- {
- // test triangular shapes
- MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6);
- A.setRandom();B.setRandom();
- VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>()));
-
- A.setRandom();B.setRandom();
- VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>()));
-
- A.setRandom();B.setRandom();
- VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>()));
-
- A.setRandom();B.setRandom();
- C = B; C.triangularView<Upper>() = A;
- copy_using_evaluator(B.triangularView<Upper>(), A);
- VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)");
-
- A.setRandom();B.setRandom();
- C = B; C.triangularView<Lower>() = A.triangularView<Lower>();
- copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>());
- VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())");
-
-
- A.setRandom();B.setRandom();
- C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose();
- copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose());
- VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())");
-
-
- A.setRandom();B.setRandom(); C = B; D = A;
- C.triangularView<Upper>().swap(D.triangularView<Upper>());
- swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>());
- VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())");
-
-
- VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A));
-
- VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A));
- }
- {
- // test diagonal shapes
- VectorXd d = VectorXd::Random(6);
- MatrixXd A = MatrixXd::Random(6,6), B(6,6);
- A.setRandom();B.setRandom();
-
- VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A));
- VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal()));
- }
- {
- // test CoeffReadCost
- Matrix4d a, b;
- VERIFY_IS_EQUAL( get_cost(a), 1 );
- VERIFY_IS_EQUAL( get_cost(a+b), 3);
- VERIFY_IS_EQUAL( get_cost(2*a+b), 4);
- VERIFY_IS_EQUAL( get_cost(a*b), 1);
- VERIFY_IS_EQUAL( get_cost(a.lazyProduct(b)), 15);
- VERIFY_IS_EQUAL( get_cost(a*(a*b)), 1);
- VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a*b)), 15);
- VERIFY_IS_EQUAL( get_cost(a*(a+b)), 1);
- VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a+b)), 15);
- }
- // regression test for PR 544 and bug 1622 (introduced in #71609c4)
- {
- // test restricted_packet_assignment with an unaligned destination
- const size_t M = 2;
- const size_t K = 2;
- const size_t N = 5;
- float *destMem = new float[(M*N) + 1];
- float *dest = (internal::UIntPtr(destMem)%EIGEN_MAX_ALIGN_BYTES) == 0 ? destMem+1 : destMem;
- const Matrix<float, Dynamic, Dynamic, RowMajor> a = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(M, K);
- const Matrix<float, Dynamic, Dynamic, RowMajor> b = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(K, N);
-
- Map<Matrix<float, Dynamic, Dynamic, RowMajor> > z(dest, M, N);;
- Product<Matrix<float, Dynamic, Dynamic, RowMajor>, Matrix<float, Dynamic, Dynamic, RowMajor>, LazyProduct> tmp(a,b);
- internal::call_restricted_packet_assignment(z.noalias(), tmp.derived(), internal::assign_op<float, float>());
-
- VERIFY_IS_APPROX(z, a*b);
- delete[] destMem;
- }
- }
|