123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
- // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <limits>
- #include <Eigen/Eigenvalues>
- template<typename EigType,typename MatType>
- void check_eigensolver_for_given_mat(const EigType &eig, const MatType& a)
- {
- typedef typename NumTraits<typename MatType::Scalar>::Real RealScalar;
- typedef Matrix<RealScalar, MatType::RowsAtCompileTime, 1> RealVectorType;
- typedef typename std::complex<RealScalar> Complex;
- Index n = a.rows();
- VERIFY_IS_EQUAL(eig.info(), Success);
- VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix());
- VERIFY_IS_APPROX(a.template cast<Complex>() * eig.eigenvectors(),
- eig.eigenvectors() * eig.eigenvalues().asDiagonal());
- VERIFY_IS_APPROX(eig.eigenvectors().colwise().norm(), RealVectorType::Ones(n).transpose());
- VERIFY_IS_APPROX(a.eigenvalues(), eig.eigenvalues());
- }
- template<typename MatrixType> void eigensolver(const MatrixType& m)
- {
- /* this test covers the following files:
- EigenSolver.h
- */
- Index rows = m.rows();
- Index cols = m.cols();
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename std::complex<RealScalar> Complex;
- MatrixType a = MatrixType::Random(rows,cols);
- MatrixType a1 = MatrixType::Random(rows,cols);
- MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
- EigenSolver<MatrixType> ei0(symmA);
- VERIFY_IS_EQUAL(ei0.info(), Success);
- VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
- VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
- (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
- EigenSolver<MatrixType> ei1(a);
- CALL_SUBTEST( check_eigensolver_for_given_mat(ei1,a) );
- EigenSolver<MatrixType> ei2;
- ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
- VERIFY_IS_EQUAL(ei2.info(), Success);
- VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
- VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
- if (rows > 2) {
- ei2.setMaxIterations(1).compute(a);
- VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
- VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
- }
- EigenSolver<MatrixType> eiNoEivecs(a, false);
- VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
- VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
- VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
- MatrixType id = MatrixType::Identity(rows, cols);
- VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
- if (rows > 2 && rows < 20)
- {
- // Test matrix with NaN
- a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
- EigenSolver<MatrixType> eiNaN(a);
- VERIFY_IS_NOT_EQUAL(eiNaN.info(), Success);
- }
- // regression test for bug 1098
- {
- EigenSolver<MatrixType> eig(a.adjoint() * a);
- eig.compute(a.adjoint() * a);
- }
- // regression test for bug 478
- {
- a.setZero();
- EigenSolver<MatrixType> ei3(a);
- VERIFY_IS_EQUAL(ei3.info(), Success);
- VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1));
- VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
- }
- }
- template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
- {
- EigenSolver<MatrixType> eig;
- VERIFY_RAISES_ASSERT(eig.eigenvectors());
- VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
- VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
- VERIFY_RAISES_ASSERT(eig.eigenvalues());
- MatrixType a = MatrixType::Random(m.rows(),m.cols());
- eig.compute(a, false);
- VERIFY_RAISES_ASSERT(eig.eigenvectors());
- VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
- }
- template<typename CoeffType>
- Matrix<typename CoeffType::Scalar,Dynamic,Dynamic>
- make_companion(const CoeffType& coeffs)
- {
- Index n = coeffs.size()-1;
- Matrix<typename CoeffType::Scalar,Dynamic,Dynamic> res(n,n);
- res.setZero();
- res.row(0) = -coeffs.tail(n) / coeffs(0);
- res.diagonal(-1).setOnes();
- return res;
- }
- template<int>
- void eigensolver_generic_extra()
- {
- {
- // regression test for bug 793
- MatrixXd a(3,3);
- a << 0, 0, 1,
- 1, 1, 1,
- 1, 1e+200, 1;
- Eigen::EigenSolver<MatrixXd> eig(a);
- double scale = 1e-200; // scale to avoid overflow during the comparisons
- VERIFY_IS_APPROX(a * eig.pseudoEigenvectors()*scale, eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()*scale);
- VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()*scale);
- }
- {
- // check a case where all eigenvalues are null.
- MatrixXd a(2,2);
- a << 1, 1,
- -1, -1;
- Eigen::EigenSolver<MatrixXd> eig(a);
- VERIFY_IS_APPROX(eig.pseudoEigenvectors().squaredNorm(), 2.);
- VERIFY_IS_APPROX((a * eig.pseudoEigenvectors()).norm()+1., 1.);
- VERIFY_IS_APPROX((eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()).norm()+1., 1.);
- VERIFY_IS_APPROX((a * eig.eigenvectors()).norm()+1., 1.);
- VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.);
- }
- // regression test for bug 933
- {
- {
- VectorXd coeffs(5); coeffs << 1, -3, -175, -225, 2250;
- MatrixXd C = make_companion(coeffs);
- EigenSolver<MatrixXd> eig(C);
- CALL_SUBTEST( check_eigensolver_for_given_mat(eig,C) );
- }
- {
- // this test is tricky because it requires high accuracy in smallest eigenvalues
- VectorXd coeffs(5); coeffs << 6.154671e-15, -1.003870e-10, -9.819570e-01, 3.995715e+03, 2.211511e+08;
- MatrixXd C = make_companion(coeffs);
- EigenSolver<MatrixXd> eig(C);
- CALL_SUBTEST( check_eigensolver_for_given_mat(eig,C) );
- Index n = C.rows();
- for(Index i=0;i<n;++i)
- {
- typedef std::complex<double> Complex;
- MatrixXcd ac = C.cast<Complex>();
- ac.diagonal().array() -= eig.eigenvalues()(i);
- VectorXd sv = ac.jacobiSvd().singularValues();
- // comparing to sv(0) is not enough here to catch the "bug",
- // the hard-coded 1.0 is important!
- VERIFY_IS_MUCH_SMALLER_THAN(sv(n-1), 1.0);
- }
- }
- }
- // regression test for bug 1557
- {
- // this test is interesting because it contains zeros on the diagonal.
- MatrixXd A_bug1557(3,3);
- A_bug1557 << 0, 0, 0, 1, 0, 0.5887907064808635127, 0, 1, 0;
- EigenSolver<MatrixXd> eig(A_bug1557);
- CALL_SUBTEST( check_eigensolver_for_given_mat(eig,A_bug1557) );
- }
- // regression test for bug 1174
- {
- Index n = 12;
- MatrixXf A_bug1174(n,n);
- A_bug1174 << 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
- 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
- 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
- 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
- 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
- 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
- 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
- 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
- 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
- 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
- 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
- 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0;
- EigenSolver<MatrixXf> eig(A_bug1174);
- CALL_SUBTEST( check_eigensolver_for_given_mat(eig,A_bug1174) );
- }
- }
- EIGEN_DECLARE_TEST(eigensolver_generic)
- {
- int s = 0;
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( eigensolver(Matrix4f()) );
- s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
- CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) );
- TEST_SET_BUT_UNUSED_VARIABLE(s)
- // some trivial but implementation-wise tricky cases
- CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) );
- CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) );
- CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) );
- CALL_SUBTEST_4( eigensolver(Matrix2d()) );
- }
- CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) );
- s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
- CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) );
- CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) );
- CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) );
- // Test problem size constructors
- CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s));
- // regression test for bug 410
- CALL_SUBTEST_2(
- {
- MatrixXd A(1,1);
- A(0,0) = std::sqrt(-1.); // is Not-a-Number
- Eigen::EigenSolver<MatrixXd> solver(A);
- VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
- }
- );
-
- CALL_SUBTEST_2( eigensolver_generic_extra<0>() );
-
- TEST_SET_BUT_UNUSED_VARIABLE(s)
- }
|