123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #define TEST_ENABLE_TEMPORARY_TRACKING
- #include "main.h"
- #include <Eigen/Cholesky>
- #include <Eigen/QR>
- #include "solverbase.h"
- template<typename MatrixType, int UpLo>
- typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
- if(m.cols()==0) return typename MatrixType::RealScalar(0);
- MatrixType symm = m.template selfadjointView<UpLo>();
- return symm.cwiseAbs().colwise().sum().maxCoeff();
- }
- template<typename MatrixType,template <typename,int> class CholType> void test_chol_update(const MatrixType& symm)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
- MatrixType symmLo = symm.template triangularView<Lower>();
- MatrixType symmUp = symm.template triangularView<Upper>();
- MatrixType symmCpy = symm;
- CholType<MatrixType,Lower> chollo(symmLo);
- CholType<MatrixType,Upper> cholup(symmUp);
- for (int k=0; k<10; ++k)
- {
- VectorType vec = VectorType::Random(symm.rows());
- RealScalar sigma = internal::random<RealScalar>();
- symmCpy += sigma * vec * vec.adjoint();
- // we are doing some downdates, so it might be the case that the matrix is not SPD anymore
- CholType<MatrixType,Lower> chol(symmCpy);
- if(chol.info()!=Success)
- break;
- chollo.rankUpdate(vec, sigma);
- VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix());
- cholup.rankUpdate(vec, sigma);
- VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix());
- }
- }
- template<typename MatrixType> void cholesky(const MatrixType& m)
- {
- /* this test covers the following files:
- LLT.h LDLT.h
- */
- Index rows = m.rows();
- Index cols = m.cols();
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
- MatrixType a0 = MatrixType::Random(rows,cols);
- VectorType vecB = VectorType::Random(rows), vecX(rows);
- MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
- SquareMatrixType symm = a0 * a0.adjoint();
- // let's make sure the matrix is not singular or near singular
- for (int k=0; k<3; ++k)
- {
- MatrixType a1 = MatrixType::Random(rows,cols);
- symm += a1 * a1.adjoint();
- }
- {
- STATIC_CHECK(( internal::is_same<typename LLT<MatrixType,Lower>::StorageIndex,int>::value ));
- STATIC_CHECK(( internal::is_same<typename LLT<MatrixType,Upper>::StorageIndex,int>::value ));
- SquareMatrixType symmUp = symm.template triangularView<Upper>();
- SquareMatrixType symmLo = symm.template triangularView<Lower>();
- LLT<SquareMatrixType,Lower> chollo(symmLo);
- VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
- check_solverbase<VectorType, VectorType>(symm, chollo, rows, rows, 1);
- check_solverbase<MatrixType, MatrixType>(symm, chollo, rows, cols, rows);
- const MatrixType symmLo_inverse = chollo.solve(MatrixType::Identity(rows,cols));
- RealScalar rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) /
- matrix_l1_norm<MatrixType, Lower>(symmLo_inverse);
- RealScalar rcond_est = chollo.rcond();
- // Verify that the estimated condition number is within a factor of 10 of the
- // truth.
- VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
- // test the upper mode
- LLT<SquareMatrixType,Upper> cholup(symmUp);
- VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix());
- vecX = cholup.solve(vecB);
- VERIFY_IS_APPROX(symm * vecX, vecB);
- matX = cholup.solve(matB);
- VERIFY_IS_APPROX(symm * matX, matB);
- // Verify that the estimated condition number is within a factor of 10 of the
- // truth.
- const MatrixType symmUp_inverse = cholup.solve(MatrixType::Identity(rows,cols));
- rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) /
- matrix_l1_norm<MatrixType, Upper>(symmUp_inverse);
- rcond_est = cholup.rcond();
- VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
- MatrixType neg = -symmLo;
- chollo.compute(neg);
- VERIFY(neg.size()==0 || chollo.info()==NumericalIssue);
- VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU()));
- VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL()));
- VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU()));
- VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL()));
- // test some special use cases of SelfCwiseBinaryOp:
- MatrixType m1 = MatrixType::Random(rows,cols), m2(rows,cols);
- m2 = m1;
- m2 += symmLo.template selfadjointView<Lower>().llt().solve(matB);
- VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
- m2 = m1;
- m2 -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
- VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
- m2 = m1;
- m2.noalias() += symmLo.template selfadjointView<Lower>().llt().solve(matB);
- VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
- m2 = m1;
- m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
- VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
- }
- // LDLT
- {
- STATIC_CHECK(( internal::is_same<typename LDLT<MatrixType,Lower>::StorageIndex,int>::value ));
- STATIC_CHECK(( internal::is_same<typename LDLT<MatrixType,Upper>::StorageIndex,int>::value ));
- int sign = internal::random<int>()%2 ? 1 : -1;
- if(sign == -1)
- {
- symm = -symm; // test a negative matrix
- }
- SquareMatrixType symmUp = symm.template triangularView<Upper>();
- SquareMatrixType symmLo = symm.template triangularView<Lower>();
- LDLT<SquareMatrixType,Lower> ldltlo(symmLo);
- VERIFY(ldltlo.info()==Success);
- VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
- check_solverbase<VectorType, VectorType>(symm, ldltlo, rows, rows, 1);
- check_solverbase<MatrixType, MatrixType>(symm, ldltlo, rows, cols, rows);
- const MatrixType symmLo_inverse = ldltlo.solve(MatrixType::Identity(rows,cols));
- RealScalar rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) /
- matrix_l1_norm<MatrixType, Lower>(symmLo_inverse);
- RealScalar rcond_est = ldltlo.rcond();
- // Verify that the estimated condition number is within a factor of 10 of the
- // truth.
- VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
- LDLT<SquareMatrixType,Upper> ldltup(symmUp);
- VERIFY(ldltup.info()==Success);
- VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix());
- vecX = ldltup.solve(vecB);
- VERIFY_IS_APPROX(symm * vecX, vecB);
- matX = ldltup.solve(matB);
- VERIFY_IS_APPROX(symm * matX, matB);
- // Verify that the estimated condition number is within a factor of 10 of the
- // truth.
- const MatrixType symmUp_inverse = ldltup.solve(MatrixType::Identity(rows,cols));
- rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) /
- matrix_l1_norm<MatrixType, Upper>(symmUp_inverse);
- rcond_est = ldltup.rcond();
- VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
- VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU()));
- VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL()));
- VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU()));
- VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL()));
- if(MatrixType::RowsAtCompileTime==Dynamic)
- {
- // note : each inplace permutation requires a small temporary vector (mask)
- // check inplace solve
- matX = matB;
- VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0);
- VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval());
- matX = matB;
- VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0);
- VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval());
- }
- // restore
- if(sign == -1)
- symm = -symm;
- // check matrices coming from linear constraints with Lagrange multipliers
- if(rows>=3)
- {
- SquareMatrixType A = symm;
- Index c = internal::random<Index>(0,rows-2);
- A.bottomRightCorner(c,c).setZero();
- // Make sure a solution exists:
- vecX.setRandom();
- vecB = A * vecX;
- vecX.setZero();
- ldltlo.compute(A);
- VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
- vecX = ldltlo.solve(vecB);
- VERIFY_IS_APPROX(A * vecX, vecB);
- }
- // check non-full rank matrices
- if(rows>=3)
- {
- Index r = internal::random<Index>(1,rows-1);
- Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,r);
- SquareMatrixType A = a * a.adjoint();
- // Make sure a solution exists:
- vecX.setRandom();
- vecB = A * vecX;
- vecX.setZero();
- ldltlo.compute(A);
- VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
- vecX = ldltlo.solve(vecB);
- VERIFY_IS_APPROX(A * vecX, vecB);
- }
- // check matrices with a wide spectrum
- if(rows>=3)
- {
- using std::pow;
- using std::sqrt;
- RealScalar s = (std::min)(16,std::numeric_limits<RealScalar>::max_exponent10/8);
- Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,rows);
- Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(rows);
- for(Index k=0; k<rows; ++k)
- d(k) = d(k)*pow(RealScalar(10),internal::random<RealScalar>(-s,s));
- SquareMatrixType A = a * d.asDiagonal() * a.adjoint();
- // Make sure a solution exists:
- vecX.setRandom();
- vecB = A * vecX;
- vecX.setZero();
- ldltlo.compute(A);
- VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
- vecX = ldltlo.solve(vecB);
- if(ldltlo.vectorD().real().cwiseAbs().minCoeff()>RealScalar(0))
- {
- VERIFY_IS_APPROX(A * vecX,vecB);
- }
- else
- {
- RealScalar large_tol = sqrt(test_precision<RealScalar>());
- VERIFY((A * vecX).isApprox(vecB, large_tol));
- ++g_test_level;
- VERIFY_IS_APPROX(A * vecX,vecB);
- --g_test_level;
- }
- }
- }
- // update/downdate
- CALL_SUBTEST(( test_chol_update<SquareMatrixType,LLT>(symm) ));
- CALL_SUBTEST(( test_chol_update<SquareMatrixType,LDLT>(symm) ));
- }
- template<typename MatrixType> void cholesky_cplx(const MatrixType& m)
- {
- // classic test
- cholesky(m);
- // test mixing real/scalar types
- Index rows = m.rows();
- Index cols = m.cols();
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RealMatrixType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
- RealMatrixType a0 = RealMatrixType::Random(rows,cols);
- VectorType vecB = VectorType::Random(rows), vecX(rows);
- MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
- RealMatrixType symm = a0 * a0.adjoint();
- // let's make sure the matrix is not singular or near singular
- for (int k=0; k<3; ++k)
- {
- RealMatrixType a1 = RealMatrixType::Random(rows,cols);
- symm += a1 * a1.adjoint();
- }
- {
- RealMatrixType symmLo = symm.template triangularView<Lower>();
- LLT<RealMatrixType,Lower> chollo(symmLo);
- VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
- check_solverbase<VectorType, VectorType>(symm, chollo, rows, rows, 1);
- //check_solverbase<MatrixType, MatrixType>(symm, chollo, rows, cols, rows);
- }
- // LDLT
- {
- int sign = internal::random<int>()%2 ? 1 : -1;
- if(sign == -1)
- {
- symm = -symm; // test a negative matrix
- }
- RealMatrixType symmLo = symm.template triangularView<Lower>();
- LDLT<RealMatrixType,Lower> ldltlo(symmLo);
- VERIFY(ldltlo.info()==Success);
- VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
- check_solverbase<VectorType, VectorType>(symm, ldltlo, rows, rows, 1);
- //check_solverbase<MatrixType, MatrixType>(symm, ldltlo, rows, cols, rows);
- }
- }
- // regression test for bug 241
- template<typename MatrixType> void cholesky_bug241(const MatrixType& m)
- {
- eigen_assert(m.rows() == 2 && m.cols() == 2);
- typedef typename MatrixType::Scalar Scalar;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
- MatrixType matA;
- matA << 1, 1, 1, 1;
- VectorType vecB;
- vecB << 1, 1;
- VectorType vecX = matA.ldlt().solve(vecB);
- VERIFY_IS_APPROX(matA * vecX, vecB);
- }
- // LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal.
- // This test checks that LDLT reports correctly that matrix is indefinite.
- // See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736
- template<typename MatrixType> void cholesky_definiteness(const MatrixType& m)
- {
- eigen_assert(m.rows() == 2 && m.cols() == 2);
- MatrixType mat;
- LDLT<MatrixType> ldlt(2);
- {
- mat << 1, 0, 0, -1;
- ldlt.compute(mat);
- VERIFY(ldlt.info()==Success);
- VERIFY(!ldlt.isNegative());
- VERIFY(!ldlt.isPositive());
- VERIFY_IS_APPROX(mat,ldlt.reconstructedMatrix());
- }
- {
- mat << 1, 2, 2, 1;
- ldlt.compute(mat);
- VERIFY(ldlt.info()==Success);
- VERIFY(!ldlt.isNegative());
- VERIFY(!ldlt.isPositive());
- VERIFY_IS_APPROX(mat,ldlt.reconstructedMatrix());
- }
- {
- mat << 0, 0, 0, 0;
- ldlt.compute(mat);
- VERIFY(ldlt.info()==Success);
- VERIFY(ldlt.isNegative());
- VERIFY(ldlt.isPositive());
- VERIFY_IS_APPROX(mat,ldlt.reconstructedMatrix());
- }
- {
- mat << 0, 0, 0, 1;
- ldlt.compute(mat);
- VERIFY(ldlt.info()==Success);
- VERIFY(!ldlt.isNegative());
- VERIFY(ldlt.isPositive());
- VERIFY_IS_APPROX(mat,ldlt.reconstructedMatrix());
- }
- {
- mat << -1, 0, 0, 0;
- ldlt.compute(mat);
- VERIFY(ldlt.info()==Success);
- VERIFY(ldlt.isNegative());
- VERIFY(!ldlt.isPositive());
- VERIFY_IS_APPROX(mat,ldlt.reconstructedMatrix());
- }
- }
- template<typename>
- void cholesky_faillure_cases()
- {
- MatrixXd mat;
- LDLT<MatrixXd> ldlt;
- {
- mat.resize(2,2);
- mat << 0, 1, 1, 0;
- ldlt.compute(mat);
- VERIFY_IS_NOT_APPROX(mat,ldlt.reconstructedMatrix());
- VERIFY(ldlt.info()==NumericalIssue);
- }
- #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE_SSE2)
- {
- mat.resize(3,3);
- mat << -1, -3, 3,
- -3, -8.9999999999999999999, 1,
- 3, 1, 0;
- ldlt.compute(mat);
- VERIFY(ldlt.info()==NumericalIssue);
- VERIFY_IS_NOT_APPROX(mat,ldlt.reconstructedMatrix());
- }
- #endif
- {
- mat.resize(3,3);
- mat << 1, 2, 3,
- 2, 4, 1,
- 3, 1, 0;
- ldlt.compute(mat);
- VERIFY(ldlt.info()==NumericalIssue);
- VERIFY_IS_NOT_APPROX(mat,ldlt.reconstructedMatrix());
- }
- {
- mat.resize(8,8);
- mat << 0.1, 0, -0.1, 0, 0, 0, 1, 0,
- 0, 4.24667, 0, 2.00333, 0, 0, 0, 0,
- -0.1, 0, 0.2, 0, -0.1, 0, 0, 0,
- 0, 2.00333, 0, 8.49333, 0, 2.00333, 0, 0,
- 0, 0, -0.1, 0, 0.1, 0, 0, 1,
- 0, 0, 0, 2.00333, 0, 4.24667, 0, 0,
- 1, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 1, 0, 0, 0;
- ldlt.compute(mat);
- VERIFY(ldlt.info()==NumericalIssue);
- VERIFY_IS_NOT_APPROX(mat,ldlt.reconstructedMatrix());
- }
- // bug 1479
- {
- mat.resize(4,4);
- mat << 1, 2, 0, 1,
- 2, 4, 0, 2,
- 0, 0, 0, 1,
- 1, 2, 1, 1;
- ldlt.compute(mat);
- VERIFY(ldlt.info()==NumericalIssue);
- VERIFY_IS_NOT_APPROX(mat,ldlt.reconstructedMatrix());
- }
- }
- template<typename MatrixType> void cholesky_verify_assert()
- {
- MatrixType tmp;
- LLT<MatrixType> llt;
- VERIFY_RAISES_ASSERT(llt.matrixL())
- VERIFY_RAISES_ASSERT(llt.matrixU())
- VERIFY_RAISES_ASSERT(llt.solve(tmp))
- VERIFY_RAISES_ASSERT(llt.transpose().solve(tmp))
- VERIFY_RAISES_ASSERT(llt.adjoint().solve(tmp))
- VERIFY_RAISES_ASSERT(llt.solveInPlace(tmp))
- LDLT<MatrixType> ldlt;
- VERIFY_RAISES_ASSERT(ldlt.matrixL())
- VERIFY_RAISES_ASSERT(ldlt.transpositionsP())
- VERIFY_RAISES_ASSERT(ldlt.vectorD())
- VERIFY_RAISES_ASSERT(ldlt.isPositive())
- VERIFY_RAISES_ASSERT(ldlt.isNegative())
- VERIFY_RAISES_ASSERT(ldlt.solve(tmp))
- VERIFY_RAISES_ASSERT(ldlt.transpose().solve(tmp))
- VERIFY_RAISES_ASSERT(ldlt.adjoint().solve(tmp))
- VERIFY_RAISES_ASSERT(ldlt.solveInPlace(tmp))
- }
- EIGEN_DECLARE_TEST(cholesky)
- {
- int s = 0;
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) );
- CALL_SUBTEST_3( cholesky(Matrix2d()) );
- CALL_SUBTEST_3( cholesky_bug241(Matrix2d()) );
- CALL_SUBTEST_3( cholesky_definiteness(Matrix2d()) );
- CALL_SUBTEST_4( cholesky(Matrix3f()) );
- CALL_SUBTEST_5( cholesky(Matrix4d()) );
- s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
- CALL_SUBTEST_2( cholesky(MatrixXd(s,s)) );
- TEST_SET_BUT_UNUSED_VARIABLE(s)
- s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
- CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) );
- TEST_SET_BUT_UNUSED_VARIABLE(s)
- }
- // empty matrix, regression test for Bug 785:
- CALL_SUBTEST_2( cholesky(MatrixXd(0,0)) );
- // This does not work yet:
- // CALL_SUBTEST_2( cholesky(Matrix<double,0,0>()) );
- CALL_SUBTEST_4( cholesky_verify_assert<Matrix3f>() );
- CALL_SUBTEST_7( cholesky_verify_assert<Matrix3d>() );
- CALL_SUBTEST_8( cholesky_verify_assert<MatrixXf>() );
- CALL_SUBTEST_2( cholesky_verify_assert<MatrixXd>() );
- // Test problem size constructors
- CALL_SUBTEST_9( LLT<MatrixXf>(10) );
- CALL_SUBTEST_9( LDLT<MatrixXf>(10) );
- CALL_SUBTEST_2( cholesky_faillure_cases<void>() );
- TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries)
- }
|