123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #define EIGEN_NO_STATIC_ASSERT
- #include "main.h"
- #include "random_without_cast_overflow.h"
- template<typename MatrixType> void basicStuff(const MatrixType& m)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
- Index rows = m.rows();
- Index cols = m.cols();
- // this test relies a lot on Random.h, and there's not much more that we can do
- // to test it, hence I consider that we will have tested Random.h
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2 = MatrixType::Random(rows, cols),
- m3(rows, cols),
- mzero = MatrixType::Zero(rows, cols),
- square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
- VectorType v1 = VectorType::Random(rows),
- vzero = VectorType::Zero(rows);
- SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
- Scalar x = 0;
- while(x == Scalar(0)) x = internal::random<Scalar>();
- Index r = internal::random<Index>(0, rows-1),
- c = internal::random<Index>(0, cols-1);
- m1.coeffRef(r,c) = x;
- VERIFY_IS_APPROX(x, m1.coeff(r,c));
- m1(r,c) = x;
- VERIFY_IS_APPROX(x, m1(r,c));
- v1.coeffRef(r) = x;
- VERIFY_IS_APPROX(x, v1.coeff(r));
- v1(r) = x;
- VERIFY_IS_APPROX(x, v1(r));
- v1[r] = x;
- VERIFY_IS_APPROX(x, v1[r]);
- // test fetching with various index types.
- Index r1 = internal::random<Index>(0, numext::mini(Index(127),rows-1));
- x = v1(static_cast<char>(r1));
- x = v1(static_cast<signed char>(r1));
- x = v1(static_cast<unsigned char>(r1));
- x = v1(static_cast<signed short>(r1));
- x = v1(static_cast<unsigned short>(r1));
- x = v1(static_cast<signed int>(r1));
- x = v1(static_cast<unsigned int>(r1));
- x = v1(static_cast<signed long>(r1));
- x = v1(static_cast<unsigned long>(r1));
- #if EIGEN_HAS_CXX11
- x = v1(static_cast<long long int>(r1));
- x = v1(static_cast<unsigned long long int>(r1));
- #endif
- VERIFY_IS_APPROX( v1, v1);
- VERIFY_IS_NOT_APPROX( v1, 2*v1);
- VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
- VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.squaredNorm());
- VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
- VERIFY_IS_APPROX( vzero, v1-v1);
- VERIFY_IS_APPROX( m1, m1);
- VERIFY_IS_NOT_APPROX( m1, 2*m1);
- VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
- VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
- VERIFY_IS_APPROX( mzero, m1-m1);
- // always test operator() on each read-only expression class,
- // in order to check const-qualifiers.
- // indeed, if an expression class (here Zero) is meant to be read-only,
- // hence has no _write() method, the corresponding MatrixBase method (here zero())
- // should return a const-qualified object so that it is the const-qualified
- // operator() that gets called, which in turn calls _read().
- VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
- // now test copying a row-vector into a (column-)vector and conversely.
- square.col(r) = square.row(r).eval();
- Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
- Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
- rv = square.row(r);
- cv = square.col(r);
- VERIFY_IS_APPROX(rv, cv.transpose());
- if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
- {
- VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
- }
- if(cols!=1 && rows!=1)
- {
- VERIFY_RAISES_ASSERT(m1[0]);
- VERIFY_RAISES_ASSERT((m1+m1)[0]);
- }
- VERIFY_IS_APPROX(m3 = m1,m1);
- MatrixType m4;
- VERIFY_IS_APPROX(m4 = m1,m1);
- m3.real() = m1.real();
- VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
- VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
- // check == / != operators
- VERIFY(m1==m1);
- VERIFY(m1!=m2);
- VERIFY(!(m1==m2));
- VERIFY(!(m1!=m1));
- m1 = m2;
- VERIFY(m1==m2);
- VERIFY(!(m1!=m2));
- // check automatic transposition
- sm2.setZero();
- for(Index i=0;i<rows;++i)
- sm2.col(i) = sm1.row(i);
- VERIFY_IS_APPROX(sm2,sm1.transpose());
- sm2.setZero();
- for(Index i=0;i<rows;++i)
- sm2.col(i).noalias() = sm1.row(i);
- VERIFY_IS_APPROX(sm2,sm1.transpose());
- sm2.setZero();
- for(Index i=0;i<rows;++i)
- sm2.col(i).noalias() += sm1.row(i);
- VERIFY_IS_APPROX(sm2,sm1.transpose());
- sm2.setZero();
- for(Index i=0;i<rows;++i)
- sm2.col(i).noalias() -= sm1.row(i);
- VERIFY_IS_APPROX(sm2,-sm1.transpose());
- // check ternary usage
- {
- bool b = internal::random<int>(0,10)>5;
- m3 = b ? m1 : m2;
- if(b) VERIFY_IS_APPROX(m3,m1);
- else VERIFY_IS_APPROX(m3,m2);
- m3 = b ? -m1 : m2;
- if(b) VERIFY_IS_APPROX(m3,-m1);
- else VERIFY_IS_APPROX(m3,m2);
- m3 = b ? m1 : -m2;
- if(b) VERIFY_IS_APPROX(m3,m1);
- else VERIFY_IS_APPROX(m3,-m2);
- }
- }
- template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
- Index rows = m.rows();
- Index cols = m.cols();
- Scalar s1 = internal::random<Scalar>(),
- s2 = internal::random<Scalar>();
- VERIFY(numext::real(s1)==numext::real_ref(s1));
- VERIFY(numext::imag(s1)==numext::imag_ref(s1));
- numext::real_ref(s1) = numext::real(s2);
- numext::imag_ref(s1) = numext::imag(s2);
- VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
- // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
- RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
- rm2 = RealMatrixType::Random(rows,cols);
- MatrixType cm(rows,cols);
- cm.real() = rm1;
- cm.imag() = rm2;
- VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
- VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
- rm1.setZero();
- rm2.setZero();
- rm1 = cm.real();
- rm2 = cm.imag();
- VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
- VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
- cm.real().setZero();
- VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
- VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
- }
- template<typename SrcScalar, typename TgtScalar>
- struct casting_test {
- static void run() {
- Matrix<SrcScalar,4,4> m;
- for (int i=0; i<m.rows(); ++i) {
- for (int j=0; j<m.cols(); ++j) {
- m(i, j) = internal::random_without_cast_overflow<SrcScalar,TgtScalar>::value();
- }
- }
- Matrix<TgtScalar,4,4> n = m.template cast<TgtScalar>();
- for (int i=0; i<m.rows(); ++i) {
- for (int j=0; j<m.cols(); ++j) {
- VERIFY_IS_APPROX(n(i, j), (internal::cast<SrcScalar,TgtScalar>(m(i, j))));
- }
- }
- }
- };
- template<typename SrcScalar, typename EnableIf = void>
- struct casting_test_runner {
- static void run() {
- casting_test<SrcScalar, bool>::run();
- casting_test<SrcScalar, int8_t>::run();
- casting_test<SrcScalar, uint8_t>::run();
- casting_test<SrcScalar, int16_t>::run();
- casting_test<SrcScalar, uint16_t>::run();
- casting_test<SrcScalar, int32_t>::run();
- casting_test<SrcScalar, uint32_t>::run();
- #if EIGEN_HAS_CXX11
- casting_test<SrcScalar, int64_t>::run();
- casting_test<SrcScalar, uint64_t>::run();
- #endif
- casting_test<SrcScalar, half>::run();
- casting_test<SrcScalar, bfloat16>::run();
- casting_test<SrcScalar, float>::run();
- casting_test<SrcScalar, double>::run();
- casting_test<SrcScalar, std::complex<float> >::run();
- casting_test<SrcScalar, std::complex<double> >::run();
- }
- };
- template<typename SrcScalar>
- struct casting_test_runner<SrcScalar, typename internal::enable_if<(NumTraits<SrcScalar>::IsComplex)>::type>
- {
- static void run() {
- // Only a few casts from std::complex<T> are defined.
- casting_test<SrcScalar, half>::run();
- casting_test<SrcScalar, bfloat16>::run();
- casting_test<SrcScalar, std::complex<float> >::run();
- casting_test<SrcScalar, std::complex<double> >::run();
- }
- };
- void casting_all() {
- casting_test_runner<bool>::run();
- casting_test_runner<int8_t>::run();
- casting_test_runner<uint8_t>::run();
- casting_test_runner<int16_t>::run();
- casting_test_runner<uint16_t>::run();
- casting_test_runner<int32_t>::run();
- casting_test_runner<uint32_t>::run();
- #if EIGEN_HAS_CXX11
- casting_test_runner<int64_t>::run();
- casting_test_runner<uint64_t>::run();
- #endif
- casting_test_runner<half>::run();
- casting_test_runner<bfloat16>::run();
- casting_test_runner<float>::run();
- casting_test_runner<double>::run();
- casting_test_runner<std::complex<float> >::run();
- casting_test_runner<std::complex<double> >::run();
- }
- template <typename Scalar>
- void fixedSizeMatrixConstruction()
- {
- Scalar raw[4];
- for(int k=0; k<4; ++k)
- raw[k] = internal::random<Scalar>();
- {
- Matrix<Scalar,4,1> m(raw);
- Array<Scalar,4,1> a(raw);
- for(int k=0; k<4; ++k) VERIFY(m(k) == raw[k]);
- for(int k=0; k<4; ++k) VERIFY(a(k) == raw[k]);
- VERIFY_IS_EQUAL(m,(Matrix<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3])));
- VERIFY((a==(Array<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))).all());
- }
- {
- Matrix<Scalar,3,1> m(raw);
- Array<Scalar,3,1> a(raw);
- for(int k=0; k<3; ++k) VERIFY(m(k) == raw[k]);
- for(int k=0; k<3; ++k) VERIFY(a(k) == raw[k]);
- VERIFY_IS_EQUAL(m,(Matrix<Scalar,3,1>(raw[0],raw[1],raw[2])));
- VERIFY((a==Array<Scalar,3,1>(raw[0],raw[1],raw[2])).all());
- }
- {
- Matrix<Scalar,2,1> m(raw), m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
- Array<Scalar,2,1> a(raw), a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
- for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
- for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
- VERIFY_IS_EQUAL(m,(Matrix<Scalar,2,1>(raw[0],raw[1])));
- VERIFY((a==Array<Scalar,2,1>(raw[0],raw[1])).all());
- for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
- for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
- }
- {
- Matrix<Scalar,1,2> m(raw),
- m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ),
- m3( (int(raw[0])), (int(raw[1])) ),
- m4( (float(raw[0])), (float(raw[1])) );
- Array<Scalar,1,2> a(raw), a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
- for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
- for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
- VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,2>(raw[0],raw[1])));
- VERIFY((a==Array<Scalar,1,2>(raw[0],raw[1])).all());
- for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
- for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
- for(int k=0; k<2; ++k) VERIFY(m3(k) == int(raw[k]));
- for(int k=0; k<2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k])));
- }
- {
- Matrix<Scalar,1,1> m(raw), m1(raw[0]), m2( (DenseIndex(raw[0])) ), m3( (int(raw[0])) );
- Array<Scalar,1,1> a(raw), a1(raw[0]), a2( (DenseIndex(raw[0])) );
- VERIFY(m(0) == raw[0]);
- VERIFY(a(0) == raw[0]);
- VERIFY(m1(0) == raw[0]);
- VERIFY(a1(0) == raw[0]);
- VERIFY(m2(0) == DenseIndex(raw[0]));
- VERIFY(a2(0) == DenseIndex(raw[0]));
- VERIFY(m3(0) == int(raw[0]));
- VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,1>(raw[0])));
- VERIFY((a==Array<Scalar,1,1>(raw[0])).all());
- }
- }
- EIGEN_DECLARE_TEST(basicstuff)
- {
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
- CALL_SUBTEST_2( basicStuff(Matrix4d()) );
- CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
- CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_8( casting_all() );
- CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- }
- CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
- CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>());
- CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
- CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>());
- CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>());
- CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>());
- }
|