123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- template<typename MatrixType> void array_for_matrix(const MatrixType& m)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
- typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
- Index rows = m.rows();
- Index cols = m.cols();
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2 = MatrixType::Random(rows, cols),
- m3(rows, cols);
- ColVectorType cv1 = ColVectorType::Random(rows);
- RowVectorType rv1 = RowVectorType::Random(cols);
-
- Scalar s1 = internal::random<Scalar>(),
- s2 = internal::random<Scalar>();
-
- // scalar addition
- VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
- VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
- VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
- m3 = m1;
- m3.array() += s2;
- VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
- m3 = m1;
- m3.array() -= s1;
- VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
- // reductions
- VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.squaredNorm());
- VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.squaredNorm());
- VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).squaredNorm());
- VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).squaredNorm());
- VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>()));
- // vector-wise ops
- m3 = m1;
- VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
- m3 = m1;
- VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
- m3 = m1;
- VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
- m3 = m1;
- VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
-
- // empty objects
- VERIFY_IS_APPROX((m1.template block<0,Dynamic>(0,0,0,cols).colwise().sum()), RowVectorType::Zero(cols));
- VERIFY_IS_APPROX((m1.template block<Dynamic,0>(0,0,rows,0).rowwise().sum()), ColVectorType::Zero(rows));
- VERIFY_IS_APPROX((m1.template block<0,Dynamic>(0,0,0,cols).colwise().prod()), RowVectorType::Ones(cols));
- VERIFY_IS_APPROX((m1.template block<Dynamic,0>(0,0,rows,0).rowwise().prod()), ColVectorType::Ones(rows));
- VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(), RowVectorType::Zero(cols));
- VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().sum(), ColVectorType::Zero(rows));
- VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().prod(), RowVectorType::Ones(cols));
- VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows));
-
- // verify the const accessors exist
- const Scalar& ref_m1 = m.matrix().array().coeffRef(0);
- const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0);
- const Scalar& ref_a1 = m.array().matrix().coeffRef(0);
- const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0);
- VERIFY(&ref_a1 == &ref_m1);
- VERIFY(&ref_a2 == &ref_m2);
- // Check write accessors:
- m1.array().coeffRef(0,0) = 1;
- VERIFY_IS_APPROX(m1(0,0),Scalar(1));
- m1.array()(0,0) = 2;
- VERIFY_IS_APPROX(m1(0,0),Scalar(2));
- m1.array().matrix().coeffRef(0,0) = 3;
- VERIFY_IS_APPROX(m1(0,0),Scalar(3));
- m1.array().matrix()(0,0) = 4;
- VERIFY_IS_APPROX(m1(0,0),Scalar(4));
- }
- template<typename MatrixType> void comparisons(const MatrixType& m)
- {
- using std::abs;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- Index rows = m.rows();
- Index cols = m.cols();
- Index r = internal::random<Index>(0, rows-1),
- c = internal::random<Index>(0, cols-1);
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2 = MatrixType::Random(rows, cols),
- m3(rows, cols);
- VERIFY(((m1.array() + Scalar(1)) > m1.array()).all());
- VERIFY(((m1.array() - Scalar(1)) < m1.array()).all());
- if (rows*cols>1)
- {
- m3 = m1;
- m3(r,c) += 1;
- VERIFY(! (m1.array() < m3.array()).all() );
- VERIFY(! (m1.array() > m3.array()).all() );
- }
- // comparisons to scalar
- VERIFY( (m1.array() != (m1(r,c)+1) ).any() );
- VERIFY( (m1.array() > (m1(r,c)-1) ).any() );
- VERIFY( (m1.array() < (m1(r,c)+1) ).any() );
- VERIFY( (m1.array() == m1(r,c) ).any() );
- VERIFY( m1.cwiseEqual(m1(r,c)).any() );
- // test Select
- VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) );
- VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) );
- Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
- for (int j=0; j<cols; ++j)
- for (int i=0; i<rows; ++i)
- m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
- VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
- .select(MatrixType::Zero(rows,cols),m1), m3);
- // shorter versions:
- VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
- .select(0,m1), m3);
- VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array())
- .select(m1,0), m3);
- // even shorter version:
- VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3);
- // count
- VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols);
- // and/or
- VERIFY( ((m1.array()<RealScalar(0)).matrix() && (m1.array()>RealScalar(0)).matrix()).count() == 0);
- VERIFY( ((m1.array()<RealScalar(0)).matrix() || (m1.array()>=RealScalar(0)).matrix()).count() == rows*cols);
- RealScalar a = m1.cwiseAbs().mean();
- VERIFY( ((m1.array()<-a).matrix() || (m1.array()>a).matrix()).count() == (m1.cwiseAbs().array()>a).count());
- typedef Matrix<Index, Dynamic, 1> VectorOfIndices;
- // TODO allows colwise/rowwise for array
- VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose());
- VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols));
- }
- template<typename VectorType> void lpNorm(const VectorType& v)
- {
- using std::sqrt;
- typedef typename VectorType::RealScalar RealScalar;
- VectorType u = VectorType::Random(v.size());
- if(v.size()==0)
- {
- VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), RealScalar(0));
- VERIFY_IS_APPROX(u.template lpNorm<1>(), RealScalar(0));
- VERIFY_IS_APPROX(u.template lpNorm<2>(), RealScalar(0));
- VERIFY_IS_APPROX(u.template lpNorm<5>(), RealScalar(0));
- }
- else
- {
- VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
- }
- VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
- VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum()));
- VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
- }
- template<typename MatrixType> void cwise_min_max(const MatrixType& m)
- {
- typedef typename MatrixType::Scalar Scalar;
- Index rows = m.rows();
- Index cols = m.cols();
- MatrixType m1 = MatrixType::Random(rows, cols);
- // min/max with array
- Scalar maxM1 = m1.maxCoeff();
- Scalar minM1 = m1.minCoeff();
- VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1)));
- VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1)));
- VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1)));
- VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1)));
- // min/max with scalar input
- VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1));
- VERIFY_IS_APPROX(m1, m1.cwiseMin(maxM1));
- VERIFY_IS_APPROX(-m1, (-m1).cwiseMin(-minM1));
- VERIFY_IS_APPROX(-m1.array(), ((-m1).array().min)( -minM1));
- VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1));
- VERIFY_IS_APPROX(m1, m1.cwiseMax(minM1));
- VERIFY_IS_APPROX(-m1, (-m1).cwiseMax(-maxM1));
- VERIFY_IS_APPROX(-m1.array(), ((-m1).array().max)(-maxM1));
- VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1).array(), (m1.array().min)( minM1));
- VERIFY_IS_APPROX(m1.array(), (m1.array().min)( maxM1));
- VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1).array(), (m1.array().max)( maxM1));
- VERIFY_IS_APPROX(m1.array(), (m1.array().max)( minM1));
- }
- template<typename MatrixTraits> void resize(const MatrixTraits& t)
- {
- typedef typename MatrixTraits::Scalar Scalar;
- typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
- typedef Array<Scalar,Dynamic,Dynamic> Array2DType;
- typedef Matrix<Scalar,Dynamic,1> VectorType;
- typedef Array<Scalar,Dynamic,1> Array1DType;
- Index rows = t.rows(), cols = t.cols();
- MatrixType m(rows,cols);
- VectorType v(rows);
- Array2DType a2(rows,cols);
- Array1DType a1(rows);
- m.array().resize(rows+1,cols+1);
- VERIFY(m.rows()==rows+1 && m.cols()==cols+1);
- a2.matrix().resize(rows+1,cols+1);
- VERIFY(a2.rows()==rows+1 && a2.cols()==cols+1);
- v.array().resize(cols);
- VERIFY(v.size()==cols);
- a1.matrix().resize(cols);
- VERIFY(a1.size()==cols);
- }
- template<int>
- void regression_bug_654()
- {
- ArrayXf a = RowVectorXf(3);
- VectorXf v = Array<float,1,Dynamic>(3);
- }
- // Check propagation of LvalueBit through Array/Matrix-Wrapper
- template<int>
- void regrrssion_bug_1410()
- {
- const Matrix4i M;
- const Array4i A;
- ArrayWrapper<const Matrix4i> MA = M.array();
- MA.row(0);
- MatrixWrapper<const Array4i> AM = A.matrix();
- AM.row(0);
- VERIFY((internal::traits<ArrayWrapper<const Matrix4i> >::Flags&LvalueBit)==0);
- VERIFY((internal::traits<MatrixWrapper<const Array4i> >::Flags&LvalueBit)==0);
- VERIFY((internal::traits<ArrayWrapper<Matrix4i> >::Flags&LvalueBit)==LvalueBit);
- VERIFY((internal::traits<MatrixWrapper<Array4i> >::Flags&LvalueBit)==LvalueBit);
- }
- EIGEN_DECLARE_TEST(array_for_matrix)
- {
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) );
- CALL_SUBTEST_2( array_for_matrix(Matrix2f()) );
- CALL_SUBTEST_3( array_for_matrix(Matrix4d()) );
- CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- }
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
- CALL_SUBTEST_2( comparisons(Matrix2f()) );
- CALL_SUBTEST_3( comparisons(Matrix4d()) );
- CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- }
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) );
- CALL_SUBTEST_2( cwise_min_max(Matrix2f()) );
- CALL_SUBTEST_3( cwise_min_max(Matrix4d()) );
- CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- }
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
- CALL_SUBTEST_2( lpNorm(Vector2f()) );
- CALL_SUBTEST_7( lpNorm(Vector3d()) );
- CALL_SUBTEST_8( lpNorm(Vector4f()) );
- CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- }
- CALL_SUBTEST_5( lpNorm(VectorXf(0)) );
- CALL_SUBTEST_4( lpNorm(VectorXcf(0)) );
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_6( resize(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- }
- CALL_SUBTEST_6( regression_bug_654<0>() );
- CALL_SUBTEST_6( regrrssion_bug_1410<0>() );
- }
|