123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #define EIGEN_NO_STATIC_ASSERT
- #include "main.h"
- template<bool IsInteger> struct adjoint_specific;
- template<> struct adjoint_specific<true> {
- template<typename Vec, typename Mat, typename Scalar>
- static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
- VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
- VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), 0));
-
- // check compatibility of dot and adjoint
- VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
- }
- };
- template<> struct adjoint_specific<false> {
- template<typename Vec, typename Mat, typename Scalar>
- static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
- typedef typename NumTraits<Scalar>::Real RealScalar;
- using std::abs;
-
- RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
- VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
- VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref));
-
- VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
- // check normalized() and normalize()
- VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
- v3 = v1;
- v3.normalize();
- VERIFY_IS_APPROX(v1, v1.norm() * v3);
- VERIFY_IS_APPROX(v3, v1.normalized());
- VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
- // check null inputs
- VERIFY_IS_APPROX((v1*0).normalized(), (v1*0));
- #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE)
- RealScalar very_small = (std::numeric_limits<RealScalar>::min)();
- VERIFY( (v1*very_small).norm() == 0 );
- VERIFY_IS_APPROX((v1*very_small).normalized(), (v1*very_small));
- v3 = v1*very_small;
- v3.normalize();
- VERIFY_IS_APPROX(v3, (v1*very_small));
- #endif
-
- // check compatibility of dot and adjoint
- ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
- VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
-
- // check that Random().normalized() works: tricky as the random xpr must be evaluated by
- // normalized() in order to produce a consistent result.
- VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
- }
- };
- template<typename MatrixType> void adjoint(const MatrixType& m)
- {
- /* this test covers the following files:
- Transpose.h Conjugate.h Dot.h
- */
- using std::abs;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
- const Index PacketSize = internal::packet_traits<Scalar>::size;
-
- Index rows = m.rows();
- Index cols = m.cols();
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2 = MatrixType::Random(rows, cols),
- m3(rows, cols),
- square = SquareMatrixType::Random(rows, rows);
- VectorType v1 = VectorType::Random(rows),
- v2 = VectorType::Random(rows),
- v3 = VectorType::Random(rows),
- vzero = VectorType::Zero(rows);
- Scalar s1 = internal::random<Scalar>(),
- s2 = internal::random<Scalar>();
- // check basic compatibility of adjoint, transpose, conjugate
- VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
- VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
- // check multiplicative behavior
- VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
- VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint());
- // check basic properties of dot, squaredNorm
- VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1));
- VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm());
-
- adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
-
- VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
-
- // like in testBasicStuff, test operator() to check const-qualification
- Index r = internal::random<Index>(0, rows-1),
- c = internal::random<Index>(0, cols-1);
- VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
- VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
- // check inplace transpose
- m3 = m1;
- m3.transposeInPlace();
- VERIFY_IS_APPROX(m3,m1.transpose());
- m3.transposeInPlace();
- VERIFY_IS_APPROX(m3,m1);
-
- if(PacketSize<m3.rows() && PacketSize<m3.cols())
- {
- m3 = m1;
- Index i = internal::random<Index>(0,m3.rows()-PacketSize);
- Index j = internal::random<Index>(0,m3.cols()-PacketSize);
- m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
- VERIFY_IS_APPROX( (m3.template block<PacketSize,PacketSize>(i,j)), (m1.template block<PacketSize,PacketSize>(i,j).transpose()) );
- m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
- VERIFY_IS_APPROX(m3,m1);
- }
- // check inplace adjoint
- m3 = m1;
- m3.adjointInPlace();
- VERIFY_IS_APPROX(m3,m1.adjoint());
- m3.transposeInPlace();
- VERIFY_IS_APPROX(m3,m1.conjugate());
- // check mixed dot product
- typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
- RealVectorType rv1 = RealVectorType::Random(rows);
- VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
- VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
- VERIFY( is_same_type(m1,m1.template conjugateIf<false>()) );
- VERIFY( is_same_type(m1.conjugate(),m1.template conjugateIf<true>()) );
- }
- template<int>
- void adjoint_extra()
- {
- MatrixXcf a(10,10), b(10,10);
- VERIFY_RAISES_ASSERT(a = a.transpose());
- VERIFY_RAISES_ASSERT(a = a.transpose() + b);
- VERIFY_RAISES_ASSERT(a = b + a.transpose());
- VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
- VERIFY_RAISES_ASSERT(a = a.adjoint());
- VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
- VERIFY_RAISES_ASSERT(a = b + a.adjoint());
- // no assertion should be triggered for these cases:
- a.transpose() = a.transpose();
- a.transpose() += a.transpose();
- a.transpose() += a.transpose() + b;
- a.transpose() = a.adjoint();
- a.transpose() += a.adjoint();
- a.transpose() += a.adjoint() + b;
- // regression tests for check_for_aliasing
- MatrixXd c(10,10);
- c = 1.0 * MatrixXd::Ones(10,10) + c;
- c = MatrixXd::Ones(10,10) * 1.0 + c;
- c = c + MatrixXd::Ones(10,10) .cwiseProduct( MatrixXd::Zero(10,10) );
- c = MatrixXd::Ones(10,10) * MatrixXd::Zero(10,10);
- // regression for bug 1646
- for (int j = 0; j < 10; ++j) {
- c.col(j).head(j) = c.row(j).head(j);
- }
- for (int j = 0; j < 10; ++j) {
- c.col(j) = c.row(j);
- }
- a.conservativeResize(1,1);
- a = a.transpose();
- a.conservativeResize(0,0);
- a = a.transpose();
- }
- EIGEN_DECLARE_TEST(adjoint)
- {
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
- CALL_SUBTEST_2( adjoint(Matrix3d()) );
- CALL_SUBTEST_3( adjoint(Matrix4f()) );
-
- CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
- CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
- CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
-
- // Complement for 128 bits vectorization:
- CALL_SUBTEST_8( adjoint(Matrix2d()) );
- CALL_SUBTEST_9( adjoint(Matrix<int,4,4>()) );
-
- // 256 bits vectorization:
- CALL_SUBTEST_10( adjoint(Matrix<float,8,8>()) );
- CALL_SUBTEST_11( adjoint(Matrix<double,4,4>()) );
- CALL_SUBTEST_12( adjoint(Matrix<int,8,8>()) );
- }
- // test a large static matrix only once
- CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
- CALL_SUBTEST_13( adjoint_extra<0>() );
- }
|