adjoint.cpp 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219
  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #define EIGEN_NO_STATIC_ASSERT
  10. #include "main.h"
  11. template<bool IsInteger> struct adjoint_specific;
  12. template<> struct adjoint_specific<true> {
  13. template<typename Vec, typename Mat, typename Scalar>
  14. static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
  15. VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
  16. VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), 0));
  17. // check compatibility of dot and adjoint
  18. VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
  19. }
  20. };
  21. template<> struct adjoint_specific<false> {
  22. template<typename Vec, typename Mat, typename Scalar>
  23. static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
  24. typedef typename NumTraits<Scalar>::Real RealScalar;
  25. using std::abs;
  26. RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
  27. VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
  28. VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref));
  29. VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
  30. // check normalized() and normalize()
  31. VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
  32. v3 = v1;
  33. v3.normalize();
  34. VERIFY_IS_APPROX(v1, v1.norm() * v3);
  35. VERIFY_IS_APPROX(v3, v1.normalized());
  36. VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
  37. // check null inputs
  38. VERIFY_IS_APPROX((v1*0).normalized(), (v1*0));
  39. #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE)
  40. RealScalar very_small = (std::numeric_limits<RealScalar>::min)();
  41. VERIFY( (v1*very_small).norm() == 0 );
  42. VERIFY_IS_APPROX((v1*very_small).normalized(), (v1*very_small));
  43. v3 = v1*very_small;
  44. v3.normalize();
  45. VERIFY_IS_APPROX(v3, (v1*very_small));
  46. #endif
  47. // check compatibility of dot and adjoint
  48. ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
  49. VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
  50. // check that Random().normalized() works: tricky as the random xpr must be evaluated by
  51. // normalized() in order to produce a consistent result.
  52. VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
  53. }
  54. };
  55. template<typename MatrixType> void adjoint(const MatrixType& m)
  56. {
  57. /* this test covers the following files:
  58. Transpose.h Conjugate.h Dot.h
  59. */
  60. using std::abs;
  61. typedef typename MatrixType::Scalar Scalar;
  62. typedef typename NumTraits<Scalar>::Real RealScalar;
  63. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  64. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
  65. const Index PacketSize = internal::packet_traits<Scalar>::size;
  66. Index rows = m.rows();
  67. Index cols = m.cols();
  68. MatrixType m1 = MatrixType::Random(rows, cols),
  69. m2 = MatrixType::Random(rows, cols),
  70. m3(rows, cols),
  71. square = SquareMatrixType::Random(rows, rows);
  72. VectorType v1 = VectorType::Random(rows),
  73. v2 = VectorType::Random(rows),
  74. v3 = VectorType::Random(rows),
  75. vzero = VectorType::Zero(rows);
  76. Scalar s1 = internal::random<Scalar>(),
  77. s2 = internal::random<Scalar>();
  78. // check basic compatibility of adjoint, transpose, conjugate
  79. VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
  80. VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
  81. // check multiplicative behavior
  82. VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
  83. VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint());
  84. // check basic properties of dot, squaredNorm
  85. VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1));
  86. VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm());
  87. adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
  88. VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
  89. // like in testBasicStuff, test operator() to check const-qualification
  90. Index r = internal::random<Index>(0, rows-1),
  91. c = internal::random<Index>(0, cols-1);
  92. VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
  93. VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
  94. // check inplace transpose
  95. m3 = m1;
  96. m3.transposeInPlace();
  97. VERIFY_IS_APPROX(m3,m1.transpose());
  98. m3.transposeInPlace();
  99. VERIFY_IS_APPROX(m3,m1);
  100. if(PacketSize<m3.rows() && PacketSize<m3.cols())
  101. {
  102. m3 = m1;
  103. Index i = internal::random<Index>(0,m3.rows()-PacketSize);
  104. Index j = internal::random<Index>(0,m3.cols()-PacketSize);
  105. m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
  106. VERIFY_IS_APPROX( (m3.template block<PacketSize,PacketSize>(i,j)), (m1.template block<PacketSize,PacketSize>(i,j).transpose()) );
  107. m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
  108. VERIFY_IS_APPROX(m3,m1);
  109. }
  110. // check inplace adjoint
  111. m3 = m1;
  112. m3.adjointInPlace();
  113. VERIFY_IS_APPROX(m3,m1.adjoint());
  114. m3.transposeInPlace();
  115. VERIFY_IS_APPROX(m3,m1.conjugate());
  116. // check mixed dot product
  117. typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  118. RealVectorType rv1 = RealVectorType::Random(rows);
  119. VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
  120. VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
  121. VERIFY( is_same_type(m1,m1.template conjugateIf<false>()) );
  122. VERIFY( is_same_type(m1.conjugate(),m1.template conjugateIf<true>()) );
  123. }
  124. template<int>
  125. void adjoint_extra()
  126. {
  127. MatrixXcf a(10,10), b(10,10);
  128. VERIFY_RAISES_ASSERT(a = a.transpose());
  129. VERIFY_RAISES_ASSERT(a = a.transpose() + b);
  130. VERIFY_RAISES_ASSERT(a = b + a.transpose());
  131. VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
  132. VERIFY_RAISES_ASSERT(a = a.adjoint());
  133. VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
  134. VERIFY_RAISES_ASSERT(a = b + a.adjoint());
  135. // no assertion should be triggered for these cases:
  136. a.transpose() = a.transpose();
  137. a.transpose() += a.transpose();
  138. a.transpose() += a.transpose() + b;
  139. a.transpose() = a.adjoint();
  140. a.transpose() += a.adjoint();
  141. a.transpose() += a.adjoint() + b;
  142. // regression tests for check_for_aliasing
  143. MatrixXd c(10,10);
  144. c = 1.0 * MatrixXd::Ones(10,10) + c;
  145. c = MatrixXd::Ones(10,10) * 1.0 + c;
  146. c = c + MatrixXd::Ones(10,10) .cwiseProduct( MatrixXd::Zero(10,10) );
  147. c = MatrixXd::Ones(10,10) * MatrixXd::Zero(10,10);
  148. // regression for bug 1646
  149. for (int j = 0; j < 10; ++j) {
  150. c.col(j).head(j) = c.row(j).head(j);
  151. }
  152. for (int j = 0; j < 10; ++j) {
  153. c.col(j) = c.row(j);
  154. }
  155. a.conservativeResize(1,1);
  156. a = a.transpose();
  157. a.conservativeResize(0,0);
  158. a = a.transpose();
  159. }
  160. EIGEN_DECLARE_TEST(adjoint)
  161. {
  162. for(int i = 0; i < g_repeat; i++) {
  163. CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
  164. CALL_SUBTEST_2( adjoint(Matrix3d()) );
  165. CALL_SUBTEST_3( adjoint(Matrix4f()) );
  166. CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
  167. CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  168. CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  169. // Complement for 128 bits vectorization:
  170. CALL_SUBTEST_8( adjoint(Matrix2d()) );
  171. CALL_SUBTEST_9( adjoint(Matrix<int,4,4>()) );
  172. // 256 bits vectorization:
  173. CALL_SUBTEST_10( adjoint(Matrix<float,8,8>()) );
  174. CALL_SUBTEST_11( adjoint(Matrix<double,4,4>()) );
  175. CALL_SUBTEST_12( adjoint(Matrix<int,8,8>()) );
  176. }
  177. // test a large static matrix only once
  178. CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
  179. CALL_SUBTEST_13( adjoint_extra<0>() );
  180. }