123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- *> \brief \b CLARFG
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLARFG + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfg.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfg.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfg.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU )
- *
- * .. Scalar Arguments ..
- * INTEGER INCX, N
- * COMPLEX ALPHA, TAU
- * ..
- * .. Array Arguments ..
- * COMPLEX X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLARFG generates a complex elementary reflector H of order n, such
- *> that
- *>
- *> H**H * ( alpha ) = ( beta ), H**H * H = I.
- *> ( x ) ( 0 )
- *>
- *> where alpha and beta are scalars, with beta real, and x is an
- *> (n-1)-element complex vector. H is represented in the form
- *>
- *> H = I - tau * ( 1 ) * ( 1 v**H ) ,
- *> ( v )
- *>
- *> where tau is a complex scalar and v is a complex (n-1)-element
- *> vector. Note that H is not hermitian.
- *>
- *> If the elements of x are all zero and alpha is real, then tau = 0
- *> and H is taken to be the unit matrix.
- *>
- *> Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 .
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the elementary reflector.
- *> \endverbatim
- *>
- *> \param[in,out] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX
- *> On entry, the value alpha.
- *> On exit, it is overwritten with the value beta.
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is COMPLEX array, dimension
- *> (1+(N-2)*abs(INCX))
- *> On entry, the vector x.
- *> On exit, it is overwritten with the vector v.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> The increment between elements of X. INCX > 0.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is COMPLEX
- *> The value tau.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complexOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU )
- *
- * -- LAPACK auxiliary routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER INCX, N
- COMPLEX ALPHA, TAU
- * ..
- * .. Array Arguments ..
- COMPLEX X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER J, KNT
- REAL ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM
- * ..
- * .. External Functions ..
- REAL SCNRM2, SLAMCH, SLAPY3
- COMPLEX CLADIV
- EXTERNAL SCNRM2, SLAMCH, SLAPY3, CLADIV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, CMPLX, REAL, SIGN
- * ..
- * .. External Subroutines ..
- EXTERNAL CSCAL, CSSCAL
- * ..
- * .. Executable Statements ..
- *
- IF( N.LE.0 ) THEN
- TAU = ZERO
- RETURN
- END IF
- *
- XNORM = SCNRM2( N-1, X, INCX )
- ALPHR = REAL( ALPHA )
- ALPHI = AIMAG( ALPHA )
- *
- IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN
- *
- * H = I
- *
- TAU = ZERO
- ELSE
- *
- * general case
- *
- BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
- SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' )
- RSAFMN = ONE / SAFMIN
- *
- KNT = 0
- IF( ABS( BETA ).LT.SAFMIN ) THEN
- *
- * XNORM, BETA may be inaccurate; scale X and recompute them
- *
- 10 CONTINUE
- KNT = KNT + 1
- CALL CSSCAL( N-1, RSAFMN, X, INCX )
- BETA = BETA*RSAFMN
- ALPHI = ALPHI*RSAFMN
- ALPHR = ALPHR*RSAFMN
- IF( ABS( BETA ).LT.SAFMIN )
- $ GO TO 10
- *
- * New BETA is at most 1, at least SAFMIN
- *
- XNORM = SCNRM2( N-1, X, INCX )
- ALPHA = CMPLX( ALPHR, ALPHI )
- BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
- END IF
- TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )
- ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA )
- CALL CSCAL( N-1, ALPHA, X, INCX )
- *
- * If ALPHA is subnormal, it may lose relative accuracy
- *
- DO 20 J = 1, KNT
- BETA = BETA*SAFMIN
- 20 CONTINUE
- ALPHA = BETA
- END IF
- *
- RETURN
- *
- * End of CLARFG
- *
- END
|