123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "lapack_common.h"
- #include <Eigen/Cholesky>
- // POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
- EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info))
- {
- *info = 0;
- if(UPLO(*uplo)==INVALID) *info = -1;
- else if(*n<0) *info = -2;
- else if(*lda<std::max(1,*n)) *info = -4;
- if(*info!=0)
- {
- int e = -*info;
- return xerbla_(SCALAR_SUFFIX_UP"POTRF", &e, 6);
- }
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- MatrixType A(a,*n,*n,*lda);
- int ret;
- if(UPLO(*uplo)==UP) ret = int(internal::llt_inplace<Scalar, Upper>::blocked(A));
- else ret = int(internal::llt_inplace<Scalar, Lower>::blocked(A));
- if(ret>=0)
- *info = ret+1;
-
- return 0;
- }
- // POTRS solves a system of linear equations A*X = B with a symmetric
- // positive definite matrix A using the Cholesky factorization
- // A = U**T*U or A = L*L**T computed by DPOTRF.
- EIGEN_LAPACK_FUNC(potrs,(char* uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info))
- {
- *info = 0;
- if(UPLO(*uplo)==INVALID) *info = -1;
- else if(*n<0) *info = -2;
- else if(*nrhs<0) *info = -3;
- else if(*lda<std::max(1,*n)) *info = -5;
- else if(*ldb<std::max(1,*n)) *info = -7;
- if(*info!=0)
- {
- int e = -*info;
- return xerbla_(SCALAR_SUFFIX_UP"POTRS", &e, 6);
- }
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- Scalar* b = reinterpret_cast<Scalar*>(pb);
- MatrixType A(a,*n,*n,*lda);
- MatrixType B(b,*n,*nrhs,*ldb);
- if(UPLO(*uplo)==UP)
- {
- A.triangularView<Upper>().adjoint().solveInPlace(B);
- A.triangularView<Upper>().solveInPlace(B);
- }
- else
- {
- A.triangularView<Lower>().solveInPlace(B);
- A.triangularView<Lower>().adjoint().solveInPlace(B);
- }
- return 0;
- }
|