123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- namespace Eigen {
- /** \eigenManualPage TopicLinearAlgebraDecompositions Catalogue of dense decompositions
- This page presents a catalogue of the dense matrix decompositions offered by Eigen.
- For an introduction on linear solvers and decompositions, check this \link TutorialLinearAlgebra page \endlink.
- To get an overview of the true relative speed of the different decompositions, check this \link DenseDecompositionBenchmark benchmark \endlink.
- \section TopicLinAlgBigTable Catalogue of decompositions offered by Eigen
- <table class="manual-vl">
- <tr>
- <th class="meta"></th>
- <th class="meta" colspan="5">Generic information, not Eigen-specific</th>
- <th class="meta" colspan="3">Eigen-specific</th>
- </tr>
- <tr>
- <th>Decomposition</th>
- <th>Requirements on the matrix</th>
- <th>Speed</th>
- <th>Algorithm reliability and accuracy</th>
- <th>Rank-revealing</th>
- <th>Allows to compute (besides linear solving)</th>
- <th>Linear solver provided by Eigen</th>
- <th>Maturity of Eigen's implementation</th>
- <th>Optimizations</th>
- </tr>
- <tr>
- <td>PartialPivLU</td>
- <td>Invertible</td>
- <td>Fast</td>
- <td>Depends on condition number</td>
- <td>-</td>
- <td>-</td>
- <td>Yes</td>
- <td>Excellent</td>
- <td>Blocking, Implicit MT</td>
- </tr>
- <tr class="alt">
- <td>FullPivLU</td>
- <td>-</td>
- <td>Slow</td>
- <td>Proven</td>
- <td>Yes</td>
- <td>-</td>
- <td>Yes</td>
- <td>Excellent</td>
- <td>-</td>
- </tr>
- <tr>
- <td>HouseholderQR</td>
- <td>-</td>
- <td>Fast</td>
- <td>Depends on condition number</td>
- <td>-</td>
- <td>Orthogonalization</td>
- <td>Yes</td>
- <td>Excellent</td>
- <td>Blocking</td>
- </tr>
- <tr class="alt">
- <td>ColPivHouseholderQR</td>
- <td>-</td>
- <td>Fast</td>
- <td>Good</td>
- <td>Yes</td>
- <td>Orthogonalization</td>
- <td>Yes</td>
- <td>Excellent</td>
- <td><em>-</em></td>
- </tr>
- <tr>
- <td>FullPivHouseholderQR</td>
- <td>-</td>
- <td>Slow</td>
- <td>Proven</td>
- <td>Yes</td>
- <td>Orthogonalization</td>
- <td>Yes</td>
- <td>Average</td>
- <td>-</td>
- </tr>
- <tr class="alt">
- <td>CompleteOrthogonalDecomposition</td>
- <td>-</td>
- <td>Fast</td>
- <td>Good</td>
- <td>Yes</td>
- <td>Orthogonalization</td>
- <td>Yes</td>
- <td>Excellent</td>
- <td><em>-</em></td>
- </tr>
- <tr>
- <td>LLT</td>
- <td>Positive definite</td>
- <td>Very fast</td>
- <td>Depends on condition number</td>
- <td>-</td>
- <td>-</td>
- <td>Yes</td>
- <td>Excellent</td>
- <td>Blocking</td>
- </tr>
- <tr class="alt">
- <td>LDLT</td>
- <td>Positive or negative semidefinite<sup><a href="#note1">1</a></sup></td>
- <td>Very fast</td>
- <td>Good</td>
- <td>-</td>
- <td>-</td>
- <td>Yes</td>
- <td>Excellent</td>
- <td><em>Soon: blocking</em></td>
- </tr>
- <tr><th class="inter" colspan="9">\n Singular values and eigenvalues decompositions</th></tr>
- <tr>
- <td>BDCSVD (divide \& conquer)</td>
- <td>-</td>
- <td>One of the fastest SVD algorithms</td>
- <td>Excellent</td>
- <td>Yes</td>
- <td>Singular values/vectors, least squares</td>
- <td>Yes (and does least squares)</td>
- <td>Excellent</td>
- <td>Blocked bidiagonalization</td>
- </tr>
- <tr>
- <td>JacobiSVD (two-sided)</td>
- <td>-</td>
- <td>Slow (but fast for small matrices)</td>
- <td>Proven<sup><a href="#note3">3</a></sup></td>
- <td>Yes</td>
- <td>Singular values/vectors, least squares</td>
- <td>Yes (and does least squares)</td>
- <td>Excellent</td>
- <td>R-SVD</td>
- </tr>
- <tr class="alt">
- <td>SelfAdjointEigenSolver</td>
- <td>Self-adjoint</td>
- <td>Fast-average<sup><a href="#note2">2</a></sup></td>
- <td>Good</td>
- <td>Yes</td>
- <td>Eigenvalues/vectors</td>
- <td>-</td>
- <td>Excellent</td>
- <td><em>Closed forms for 2x2 and 3x3</em></td>
- </tr>
- <tr>
- <td>ComplexEigenSolver</td>
- <td>Square</td>
- <td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
- <td>Depends on condition number</td>
- <td>Yes</td>
- <td>Eigenvalues/vectors</td>
- <td>-</td>
- <td>Average</td>
- <td>-</td>
- </tr>
- <tr class="alt">
- <td>EigenSolver</td>
- <td>Square and real</td>
- <td>Average-slow<sup><a href="#note2">2</a></sup></td>
- <td>Depends on condition number</td>
- <td>Yes</td>
- <td>Eigenvalues/vectors</td>
- <td>-</td>
- <td>Average</td>
- <td>-</td>
- </tr>
- <tr>
- <td>GeneralizedSelfAdjointEigenSolver</td>
- <td>Square</td>
- <td>Fast-average<sup><a href="#note2">2</a></sup></td>
- <td>Depends on condition number</td>
- <td>-</td>
- <td>Generalized eigenvalues/vectors</td>
- <td>-</td>
- <td>Good</td>
- <td>-</td>
- </tr>
- <tr><th class="inter" colspan="9">\n Helper decompositions</th></tr>
- <tr>
- <td>RealSchur</td>
- <td>Square and real</td>
- <td>Average-slow<sup><a href="#note2">2</a></sup></td>
- <td>Depends on condition number</td>
- <td>Yes</td>
- <td>-</td>
- <td>-</td>
- <td>Average</td>
- <td>-</td>
- </tr>
- <tr class="alt">
- <td>ComplexSchur</td>
- <td>Square</td>
- <td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
- <td>Depends on condition number</td>
- <td>Yes</td>
- <td>-</td>
- <td>-</td>
- <td>Average</td>
- <td>-</td>
- </tr>
- <tr class="alt">
- <td>Tridiagonalization</td>
- <td>Self-adjoint</td>
- <td>Fast</td>
- <td>Good</td>
- <td>-</td>
- <td>-</td>
- <td>-</td>
- <td>Good</td>
- <td><em>Soon: blocking</em></td>
- </tr>
- <tr>
- <td>HessenbergDecomposition</td>
- <td>Square</td>
- <td>Average</td>
- <td>Good</td>
- <td>-</td>
- <td>-</td>
- <td>-</td>
- <td>Good</td>
- <td><em>Soon: blocking</em></td>
- </tr>
- </table>
- \b Notes:
- <ul>
- <li><a name="note1">\b 1: </a>There exist two variants of the LDLT algorithm. Eigen's one produces a pure diagonal D matrix, and therefore it cannot handle indefinite matrices, unlike Lapack's one which produces a block diagonal D matrix.</li>
- <li><a name="note2">\b 2: </a>Eigenvalues, SVD and Schur decompositions rely on iterative algorithms. Their convergence speed depends on how well the eigenvalues are separated.</li>
- <li><a name="note3">\b 3: </a>Our JacobiSVD is two-sided, making for proven and optimal precision for square matrices. For non-square matrices, we have to use a QR preconditioner first. The default choice, ColPivHouseholderQR, is already very reliable, but if you want it to be proven, use FullPivHouseholderQR instead.
- </ul>
- \section TopicLinAlgTerminology Terminology
- <dl>
- <dt><b>Selfadjoint</b></dt>
- <dd>For a real matrix, selfadjoint is a synonym for symmetric. For a complex matrix, selfadjoint is a synonym for \em hermitian.
- More generally, a matrix \f$ A \f$ is selfadjoint if and only if it is equal to its adjoint \f$ A^* \f$. The adjoint is also called the \em conjugate \em transpose. </dd>
- <dt><b>Positive/negative definite</b></dt>
- <dd>A selfadjoint matrix \f$ A \f$ is positive definite if \f$ v^* A v > 0 \f$ for any non zero vector \f$ v \f$.
- In the same vein, it is negative definite if \f$ v^* A v < 0 \f$ for any non zero vector \f$ v \f$ </dd>
- <dt><b>Positive/negative semidefinite</b></dt>
- <dd>A selfadjoint matrix \f$ A \f$ is positive semi-definite if \f$ v^* A v \ge 0 \f$ for any non zero vector \f$ v \f$.
- In the same vein, it is negative semi-definite if \f$ v^* A v \le 0 \f$ for any non zero vector \f$ v \f$ </dd>
- <dt><b>Blocking</b></dt>
- <dd>Means the algorithm can work per block, whence guaranteeing a good scaling of the performance for large matrices.</dd>
- <dt><b>Implicit Multi Threading (MT)</b></dt>
- <dd>Means the algorithm can take advantage of multicore processors via OpenMP. "Implicit" means the algortihm itself is not parallelized, but that it relies on parallelized matrix-matrix product routines.</dd>
- <dt><b>Explicit Multi Threading (MT)</b></dt>
- <dd>Means the algorithm is explicitly parallelized to take advantage of multicore processors via OpenMP.</dd>
- <dt><b>Meta-unroller</b></dt>
- <dd>Means the algorithm is automatically and explicitly unrolled for very small fixed size matrices.</dd>
- <dt><b></b></dt>
- <dd></dd>
- </dl>
- */
- }
|