123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805 |
- namespace Eigen {
- /** \eigenManualPage QuickRefPage Quick reference guide
- \eigenAutoToc
- <hr>
- <a href="#" class="top">top</a>
- \section QuickRef_Headers Modules and Header files
- The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once.
- <table class="manual">
- <tr><th>Module</th><th>Header file</th><th>Contents</th></tr>
- <tr ><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr>
- <tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr>
- <tr ><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr>
- <tr class="alt"><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr>
- <tr ><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr>
- <tr class="alt"><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decompositions with least-squares solver (JacobiSVD, BDCSVD)</td></tr>
- <tr ><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr>
- <tr class="alt"><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr>
- <tr ><td>\link Sparse_Module Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, SparseVector) \n (see \ref SparseQuickRefPage for details on sparse modules)</td></tr>
- <tr class="alt"><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr>
- <tr ><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr>
- </table>
- <a href="#" class="top">top</a>
- \section QuickRef_Types Array, matrix and vector types
- \b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array:
- \code
- typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType;
- typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType;
- \endcode
- \li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.).
- \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic.
- \li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options)
- All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid:
- \code
- Matrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation)
- Matrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation)
- Matrix<double, Dynamic, Dynamic, RowMajor> // Fully dynamic, row major (heap allocation)
- Matrix<double, 13, 3> // Fully fixed (usually allocated on stack)
- \endcode
- In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples:
- <table class="example">
- <tr><th>Matrices</th><th>Arrays</th></tr>
- <tr><td>\code
- Matrix<float,Dynamic,Dynamic> <=> MatrixXf
- Matrix<double,Dynamic,1> <=> VectorXd
- Matrix<int,1,Dynamic> <=> RowVectorXi
- Matrix<float,3,3> <=> Matrix3f
- Matrix<float,4,1> <=> Vector4f
- \endcode</td><td>\code
- Array<float,Dynamic,Dynamic> <=> ArrayXXf
- Array<double,Dynamic,1> <=> ArrayXd
- Array<int,1,Dynamic> <=> RowArrayXi
- Array<float,3,3> <=> Array33f
- Array<float,4,1> <=> Array4f
- \endcode</td></tr>
- </table>
- Conversion between the matrix and array worlds:
- \code
- Array44f a1, a2;
- Matrix4f m1, m2;
- m1 = a1 * a2; // coeffwise product, implicit conversion from array to matrix.
- a1 = m1 * m2; // matrix product, implicit conversion from matrix to array.
- a2 = a1 + m1.array(); // mixing array and matrix is forbidden
- m2 = a1.matrix() + m1; // and explicit conversion is required.
- ArrayWrapper<Matrix4f> m1a(m1); // m1a is an alias for m1.array(), they share the same coefficients
- MatrixWrapper<Array44f> a1m(a1);
- \endcode
- In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object:
- \li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only
- \li <a name="arrayonly"></a>\arrayworld array objects only
- \subsection QuickRef_Basics Basic matrix manipulation
- <table class="manual">
- <tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr>
- <tr><td>Constructors</td>
- <td>\code
- Vector4d v4;
- Vector2f v1(x, y);
- Array3i v2(x, y, z);
- Vector4d v3(x, y, z, w);
- VectorXf v5; // empty object
- ArrayXf v6(size);
- \endcode</td><td>\code
- Matrix4f m1;
- MatrixXf m5; // empty object
- MatrixXf m6(nb_rows, nb_columns);
- \endcode</td><td class="note">
- By default, the coefficients \n are left uninitialized</td></tr>
- <tr class="alt"><td>Comma initializer</td>
- <td>\code
- Vector3f v1; v1 << x, y, z;
- ArrayXf v2(4); v2 << 1, 2, 3, 4;
- \endcode</td><td>\code
- Matrix3f m1; m1 << 1, 2, 3,
- 4, 5, 6,
- 7, 8, 9;
- \endcode</td><td></td></tr>
- <tr><td>Comma initializer (bis)</td>
- <td colspan="2">
- \include Tutorial_commainit_02.cpp
- </td>
- <td>
- output:
- \verbinclude Tutorial_commainit_02.out
- </td>
- </tr>
- <tr class="alt"><td>Runtime info</td>
- <td>\code
- vector.size();
- vector.innerStride();
- vector.data();
- \endcode</td><td>\code
- matrix.rows(); matrix.cols();
- matrix.innerSize(); matrix.outerSize();
- matrix.innerStride(); matrix.outerStride();
- matrix.data();
- \endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr>
- <tr><td>Compile-time info</td>
- <td colspan="2">\code
- ObjectType::Scalar ObjectType::RowsAtCompileTime
- ObjectType::RealScalar ObjectType::ColsAtCompileTime
- ObjectType::Index ObjectType::SizeAtCompileTime
- \endcode</td><td></td></tr>
- <tr class="alt"><td>Resizing</td>
- <td>\code
- vector.resize(size);
- vector.resizeLike(other_vector);
- vector.conservativeResize(size);
- \endcode</td><td>\code
- matrix.resize(nb_rows, nb_cols);
- matrix.resize(Eigen::NoChange, nb_cols);
- matrix.resize(nb_rows, Eigen::NoChange);
- matrix.resizeLike(other_matrix);
- matrix.conservativeResize(nb_rows, nb_cols);
- \endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr>
- <tr><td>Coeff access with \n range checking</td>
- <td>\code
- vector(i) vector.x()
- vector[i] vector.y()
- vector.z()
- vector.w()
- \endcode</td><td>\code
- matrix(i,j)
- \endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr>
- <tr class="alt"><td>Coeff access without \n range checking</td>
- <td>\code
- vector.coeff(i)
- vector.coeffRef(i)
- \endcode</td><td>\code
- matrix.coeff(i,j)
- matrix.coeffRef(i,j)
- \endcode</td><td></td></tr>
- <tr><td>Assignment/copy</td>
- <td colspan="2">\code
- object = expression;
- object_of_float = expression_of_double.cast<float>();
- \endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr>
- </table>
- \subsection QuickRef_PredefMat Predefined Matrices
- <table class="manual">
- <tr>
- <th>Fixed-size matrix or vector</th>
- <th>Dynamic-size matrix</th>
- <th>Dynamic-size vector</th>
- </tr>
- <tr style="border-bottom-style: none;">
- <td>
- \code
- typedef {Matrix3f|Array33f} FixedXD;
- FixedXD x;
- x = FixedXD::Zero();
- x = FixedXD::Ones();
- x = FixedXD::Constant(value);
- x = FixedXD::Random();
- x = FixedXD::LinSpaced(size, low, high);
- x.setZero();
- x.setOnes();
- x.setConstant(value);
- x.setRandom();
- x.setLinSpaced(size, low, high);
- \endcode
- </td>
- <td>
- \code
- typedef {MatrixXf|ArrayXXf} Dynamic2D;
- Dynamic2D x;
- x = Dynamic2D::Zero(rows, cols);
- x = Dynamic2D::Ones(rows, cols);
- x = Dynamic2D::Constant(rows, cols, value);
- x = Dynamic2D::Random(rows, cols);
- N/A
- x.setZero(rows, cols);
- x.setOnes(rows, cols);
- x.setConstant(rows, cols, value);
- x.setRandom(rows, cols);
- N/A
- \endcode
- </td>
- <td>
- \code
- typedef {VectorXf|ArrayXf} Dynamic1D;
- Dynamic1D x;
- x = Dynamic1D::Zero(size);
- x = Dynamic1D::Ones(size);
- x = Dynamic1D::Constant(size, value);
- x = Dynamic1D::Random(size);
- x = Dynamic1D::LinSpaced(size, low, high);
- x.setZero(size);
- x.setOnes(size);
- x.setConstant(size, value);
- x.setRandom(size);
- x.setLinSpaced(size, low, high);
- \endcode
- </td>
- </tr>
- <tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr>
- <tr style="border-bottom-style: none;">
- <td>
- \code
- x = FixedXD::Identity();
- x.setIdentity();
- Vector3f::UnitX() // 1 0 0
- Vector3f::UnitY() // 0 1 0
- Vector3f::UnitZ() // 0 0 1
- Vector4f::Unit(i)
- x.setUnit(i);
- \endcode
- </td>
- <td>
- \code
- x = Dynamic2D::Identity(rows, cols);
- x.setIdentity(rows, cols);
- N/A
- \endcode
- </td>
- <td>\code
- N/A
- VectorXf::Unit(size,i)
- x.setUnit(size,i);
- VectorXf::Unit(4,1) == Vector4f(0,1,0,0)
- == Vector4f::UnitY()
- \endcode
- </td>
- </tr>
- </table>
- Note that it is allowed to call any of the \c set* functions to a dynamic-sized vector or matrix without passing new sizes.
- For instance:
- \code
- MatrixXi M(3,3);
- M.setIdentity();
- \endcode
- \subsection QuickRef_Map Mapping external arrays
- <table class="manual">
- <tr>
- <td>Contiguous \n memory</td>
- <td>\code
- float data[] = {1,2,3,4};
- Map<Vector3f> v1(data); // uses v1 as a Vector3f object
- Map<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object
- Map<Array22f> m1(data); // uses m1 as a Array22f object
- Map<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object
- \endcode</td>
- </tr>
- <tr>
- <td>Typical usage \n of strides</td>
- <td>\code
- float data[] = {1,2,3,4,5,6,7,8,9};
- Map<VectorXf,0,InnerStride<2> > v1(data,3); // = [1,3,5]
- Map<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // = [1,4,7]
- Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // both lines |1,4,7|
- Map<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // are equal to: |2,5,8|
- \endcode</td>
- </tr>
- </table>
- <a href="#" class="top">top</a>
- \section QuickRef_ArithmeticOperators Arithmetic Operators
- <table class="manual">
- <tr><td>
- add \n subtract</td><td>\code
- mat3 = mat1 + mat2; mat3 += mat1;
- mat3 = mat1 - mat2; mat3 -= mat1;\endcode
- </td></tr>
- <tr class="alt"><td>
- scalar product</td><td>\code
- mat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1;
- mat3 = mat1 / s1; mat3 /= s1;\endcode
- </td></tr>
- <tr><td>
- matrix/vector \n products \matrixworld</td><td>\code
- col2 = mat1 * col1;
- row2 = row1 * mat1; row1 *= mat1;
- mat3 = mat1 * mat2; mat3 *= mat1; \endcode
- </td></tr>
- <tr class="alt"><td>
- transposition \n adjoint \matrixworld</td><td>\code
- mat1 = mat2.transpose(); mat1.transposeInPlace();
- mat1 = mat2.adjoint(); mat1.adjointInPlace();
- \endcode
- </td></tr>
- <tr><td>
- \link MatrixBase::dot dot \endlink product \n inner product \matrixworld</td><td>\code
- scalar = vec1.dot(vec2);
- scalar = col1.adjoint() * col2;
- scalar = (col1.adjoint() * col2).value();\endcode
- </td></tr>
- <tr class="alt"><td>
- outer product \matrixworld</td><td>\code
- mat = col1 * col2.transpose();\endcode
- </td></tr>
- <tr><td>
- \link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code
- scalar = vec1.norm(); scalar = vec1.squaredNorm()
- vec2 = vec1.normalized(); vec1.normalize(); // inplace \endcode
- </td></tr>
- <tr class="alt"><td>
- \link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code
- #include <Eigen/Geometry>
- vec3 = vec1.cross(vec2);\endcode</td></tr>
- </table>
- <a href="#" class="top">top</a>
- \section QuickRef_Coeffwise Coefficient-wise \& Array operators
- In addition to the aforementioned operators, Eigen supports numerous coefficient-wise operator and functions.
- Most of them unambiguously makes sense in array-world\arrayworld. The following operators are readily available for arrays,
- or available through .array() for vectors and matrices:
- <table class="manual">
- <tr><td>Arithmetic operators</td><td>\code
- array1 * array2 array1 / array2 array1 *= array2 array1 /= array2
- array1 + scalar array1 - scalar array1 += scalar array1 -= scalar
- \endcode</td></tr>
- <tr><td>Comparisons</td><td>\code
- array1 < array2 array1 > array2 array1 < scalar array1 > scalar
- array1 <= array2 array1 >= array2 array1 <= scalar array1 >= scalar
- array1 == array2 array1 != array2 array1 == scalar array1 != scalar
- array1.min(array2) array1.max(array2) array1.min(scalar) array1.max(scalar)
- \endcode</td></tr>
- <tr><td>Trigo, power, and \n misc functions \n and the STL-like variants</td><td>\code
- array1.abs2()
- array1.abs() abs(array1)
- array1.sqrt() sqrt(array1)
- array1.log() log(array1)
- array1.log10() log10(array1)
- array1.exp() exp(array1)
- array1.pow(array2) pow(array1,array2)
- array1.pow(scalar) pow(array1,scalar)
- pow(scalar,array2)
- array1.square()
- array1.cube()
- array1.inverse()
- array1.sin() sin(array1)
- array1.cos() cos(array1)
- array1.tan() tan(array1)
- array1.asin() asin(array1)
- array1.acos() acos(array1)
- array1.atan() atan(array1)
- array1.sinh() sinh(array1)
- array1.cosh() cosh(array1)
- array1.tanh() tanh(array1)
- array1.arg() arg(array1)
- array1.floor() floor(array1)
- array1.ceil() ceil(array1)
- array1.round() round(aray1)
- array1.isFinite() isfinite(array1)
- array1.isInf() isinf(array1)
- array1.isNaN() isnan(array1)
- \endcode
- </td></tr>
- </table>
- The following coefficient-wise operators are available for all kind of expressions (matrices, vectors, and arrays), and for both real or complex scalar types:
- <table class="manual">
- <tr><th>Eigen's API</th><th>STL-like APIs\arrayworld </th><th>Comments</th></tr>
- <tr><td>\code
- mat1.real()
- mat1.imag()
- mat1.conjugate()
- \endcode
- </td><td>\code
- real(array1)
- imag(array1)
- conj(array1)
- \endcode
- </td><td>
- \code
- // read-write, no-op for real expressions
- // read-only for real, read-write for complexes
- // no-op for real expressions
- \endcode
- </td></tr>
- </table>
- Some coefficient-wise operators are readily available for for matrices and vectors through the following cwise* methods:
- <table class="manual">
- <tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr>
- <tr><td>\code
- mat1.cwiseMin(mat2) mat1.cwiseMin(scalar)
- mat1.cwiseMax(mat2) mat1.cwiseMax(scalar)
- mat1.cwiseAbs2()
- mat1.cwiseAbs()
- mat1.cwiseSqrt()
- mat1.cwiseInverse()
- mat1.cwiseProduct(mat2)
- mat1.cwiseQuotient(mat2)
- mat1.cwiseEqual(mat2) mat1.cwiseEqual(scalar)
- mat1.cwiseNotEqual(mat2)
- \endcode
- </td><td>\code
- mat1.array().min(mat2.array()) mat1.array().min(scalar)
- mat1.array().max(mat2.array()) mat1.array().max(scalar)
- mat1.array().abs2()
- mat1.array().abs()
- mat1.array().sqrt()
- mat1.array().inverse()
- mat1.array() * mat2.array()
- mat1.array() / mat2.array()
- mat1.array() == mat2.array() mat1.array() == scalar
- mat1.array() != mat2.array()
- \endcode</td></tr>
- </table>
- The main difference between the two API is that the one based on cwise* methods returns an expression in the matrix world,
- while the second one (based on .array()) returns an array expression.
- Recall that .array() has no cost, it only changes the available API and interpretation of the data.
- It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with <a href="http://en.cppreference.com/w/cpp/utility/functional/ptr_fun">std::ptr_fun</a> (c++03, deprecated or removed in newer C++ versions), <a href="http://en.cppreference.com/w/cpp/utility/functional/ref">std::ref</a> (c++11), or <a href="http://en.cppreference.com/w/cpp/language/lambda">lambdas</a> (c++11):
- \code
- mat1.unaryExpr(std::ptr_fun(foo));
- mat1.unaryExpr(std::ref(foo));
- mat1.unaryExpr([](double x) { return foo(x); });
- \endcode
- Please note that it's not possible to pass a raw function pointer to \c unaryExpr, so please warp it as shown above.
- <a href="#" class="top">top</a>
- \section QuickRef_Reductions Reductions
- Eigen provides several reduction methods such as:
- \link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink,
- \link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink,
- \link MatrixBase::trace() trace() \endlink \matrixworld,
- \link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld,
- \link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink.
- All reduction operations can be done matrix-wise,
- \link DenseBase::colwise() column-wise \endlink or
- \link DenseBase::rowwise() row-wise \endlink. Usage example:
- <table class="manual">
- <tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code
- 5 3 1
- mat = 2 7 8
- 9 4 6 \endcode
- </td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr>
- <tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr>
- <tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code
- 1
- 2
- 4
- \endcode</td></tr>
- </table>
- Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink:
- \code
- int i, j;
- s = vector.minCoeff(&i); // s == vector[i]
- s = matrix.maxCoeff(&i, &j); // s == matrix(i,j)
- \endcode
- Typical use cases of all() and any():
- \code
- if((array1 > 0).all()) ... // if all coefficients of array1 are greater than 0 ...
- if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ...
- \endcode
- <a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices
- <div class="warningbox">
- <strong>PLEASE HELP US IMPROVING THIS SECTION.</strong>
- %Eigen 3.4 supports a much improved API for sub-matrices, including,
- slicing and indexing from arrays: \ref TutorialSlicingIndexing
- </div>
- Read-write access to a \link DenseBase::col(Index) column \endlink
- or a \link DenseBase::row(Index) row \endlink of a matrix (or array):
- \code
- mat1.row(i) = mat2.col(j);
- mat1.col(j1).swap(mat1.col(j2));
- \endcode
- Read-write access to sub-vectors:
- <table class="manual">
- <tr>
- <th>Default versions</th>
- <th>Optimized versions when the size \n is known at compile time</th></tr>
- <th></th>
- <tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr>
- <tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr>
- <tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td>
- <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr>
- <tr class="alt"><td colspan="3">
- Read-write access to sub-matrices:</td></tr>
- <tr>
- <td>\code mat1.block(i,j,rows,cols)\endcode
- \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td>
- <td>\code mat1.block<rows,cols>(i,j)\endcode
- \link DenseBase::block(Index,Index) (more) \endlink</td>
- <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr>
- <tr><td>\code
- mat1.topLeftCorner(rows,cols)
- mat1.topRightCorner(rows,cols)
- mat1.bottomLeftCorner(rows,cols)
- mat1.bottomRightCorner(rows,cols)\endcode
- <td>\code
- mat1.topLeftCorner<rows,cols>()
- mat1.topRightCorner<rows,cols>()
- mat1.bottomLeftCorner<rows,cols>()
- mat1.bottomRightCorner<rows,cols>()\endcode
- <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr>
- <tr><td>\code
- mat1.topRows(rows)
- mat1.bottomRows(rows)
- mat1.leftCols(cols)
- mat1.rightCols(cols)\endcode
- <td>\code
- mat1.topRows<rows>()
- mat1.bottomRows<rows>()
- mat1.leftCols<cols>()
- mat1.rightCols<cols>()\endcode
- <td>specialized versions of block() \n when the block fit two corners</td></tr>
- </table>
- <a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations
- <div class="warningbox">
- <strong>PLEASE HELP US IMPROVING THIS SECTION.</strong>
- %Eigen 3.4 supports a new API for reshaping: \ref TutorialReshape
- </div>
- \subsection QuickRef_Reverse Reverse
- Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()).
- \code
- vec.reverse() mat.colwise().reverse() mat.rowwise().reverse()
- vec.reverseInPlace()
- \endcode
- \subsection QuickRef_Replicate Replicate
- Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate())
- \code
- vec.replicate(times) vec.replicate<Times>
- mat.replicate(vertical_times, horizontal_times) mat.replicate<VerticalTimes, HorizontalTimes>()
- mat.colwise().replicate(vertical_times, horizontal_times) mat.colwise().replicate<VerticalTimes, HorizontalTimes>()
- mat.rowwise().replicate(vertical_times, horizontal_times) mat.rowwise().replicate<VerticalTimes, HorizontalTimes>()
- \endcode
- <a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices
- (matrix world \matrixworld)
- \subsection QuickRef_Diagonal Diagonal matrices
- <table class="example">
- <tr><th>Operation</th><th>Code</th></tr>
- <tr><td>
- view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code
- mat1 = vec1.asDiagonal();\endcode
- </td></tr>
- <tr><td>
- Declare a diagonal matrix</td><td>\code
- DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
- diag1.diagonal() = vector;\endcode
- </td></tr>
- <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td>
- <td>\code
- vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal
- vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal
- vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal
- vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal
- vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal
- \endcode</td>
- </tr>
- <tr><td>Optimized products and inverse</td>
- <td>\code
- mat3 = scalar * diag1 * mat1;
- mat3 += scalar * mat1 * vec1.asDiagonal();
- mat3 = vec1.asDiagonal().inverse() * mat1
- mat3 = mat1 * diag1.inverse()
- \endcode</td>
- </tr>
- </table>
- \subsection QuickRef_TriangularView Triangular views
- TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information.
- \note The .triangularView() template member function requires the \c template keyword if it is used on an
- object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
- <table class="example">
- <tr><th>Operation</th><th>Code</th></tr>
- <tr><td>
- Reference to a triangular with optional \n
- unit or null diagonal (read/write):
- </td><td>\code
- m.triangularView<Xxx>()
- \endcode \n
- \c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower
- </td></tr>
- <tr><td>
- Writing to a specific triangular part:\n (only the referenced triangular part is evaluated)
- </td><td>\code
- m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode
- </td></tr>
- <tr><td>
- Conversion to a dense matrix setting the opposite triangular part to zero:
- </td><td>\code
- m2 = m1.triangularView<Eigen::UnitUpper>()\endcode
- </td></tr>
- <tr><td>
- Products:
- </td><td>\code
- m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2
- m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode
- </td></tr>
- <tr><td>
- Solving linear equations:\n
- \f$ M_2 := L_1^{-1} M_2 \f$ \n
- \f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n
- \f$ M_4 := M_4 U_1^{-1} \f$
- </td><td>\n \code
- L1.triangularView<Eigen::UnitLower>().solveInPlace(M2)
- L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3)
- U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode
- </td></tr>
- </table>
- \subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views
- Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint
- matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be
- used to store other information.
- \note The .selfadjointView() template member function requires the \c template keyword if it is used on an
- object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
- <table class="example">
- <tr><th>Operation</th><th>Code</th></tr>
- <tr><td>
- Conversion to a dense matrix:
- </td><td>\code
- m2 = m.selfadjointView<Eigen::Lower>();\endcode
- </td></tr>
- <tr><td>
- Product with another general matrix or vector:
- </td><td>\code
- m3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3;
- m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode
- </td></tr>
- <tr><td>
- Rank 1 and rank K update: \n
- \f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n
- \f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$
- </td><td>\n \code
- M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1);
- M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode
- </td></tr>
- <tr><td>
- Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$)
- </td><td>\code
- M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s);
- \endcode
- </td></tr>
- <tr><td>
- Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$)
- </td><td>\code
- // via a standard Cholesky factorization
- m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2);
- // via a Cholesky factorization with pivoting
- m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2);
- \endcode
- </td></tr>
- </table>
- */
- /*
- <table class="tutorial_code">
- <tr><td>
- \link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code
- mat1 = vec1.asDiagonal();\endcode
- </td></tr>
- <tr><td>
- Declare a diagonal matrix</td><td>\code
- DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
- diag1.diagonal() = vector;\endcode
- </td></tr>
- <tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td>
- <td>\code
- vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal
- vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal
- vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal
- vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal
- vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal
- \endcode</td>
- </tr>
- <tr><td>View on a triangular part of a matrix (read/write)</td>
- <td>\code
- mat2 = mat1.triangularView<Xxx>();
- // Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower
- mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced
- \endcode</td></tr>
- <tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td>
- <td>\code
- mat2 = mat1.selfadjointView<Xxx>(); // Xxx = Upper or Lower
- mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint(); // evaluated and write to the upper triangular part only
- \endcode</td></tr>
- </table>
- Optimized products:
- \code
- mat3 += scalar * vec1.asDiagonal() * mat1
- mat3 += scalar * mat1 * vec1.asDiagonal()
- mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2
- mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>()
- mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2
- mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>()
- mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2);
- mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar);
- \endcode
- Inverse products: (all are optimized)
- \code
- mat3 = vec1.asDiagonal().inverse() * mat1
- mat3 = mat1 * diag1.inverse()
- mat1.triangularView<Xxx>().solveInPlace(mat2)
- mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2)
- mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2)
- \endcode
- */
- }
|