123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- namespace Eigen {
- /** \page TopicCustomizing_Plugins Extending MatrixBase (and other classes)
- In this section we will see how to add custom methods to MatrixBase. Since all expressions and matrix types inherit MatrixBase, adding a method to MatrixBase make it immediately available to all expressions ! A typical use case is, for instance, to make Eigen compatible with another API.
- You certainly know that in C++ it is not possible to add methods to an existing class. So how that's possible ? Here the trick is to include in the declaration of MatrixBase a file defined by the preprocessor token \c EIGEN_MATRIXBASE_PLUGIN:
- \code
- class MatrixBase {
- // ...
- #ifdef EIGEN_MATRIXBASE_PLUGIN
- #include EIGEN_MATRIXBASE_PLUGIN
- #endif
- };
- \endcode
- Therefore to extend MatrixBase with your own methods you just have to create a file with your method declaration and define EIGEN_MATRIXBASE_PLUGIN before you include any Eigen's header file.
- You can extend many of the other classes used in Eigen by defining similarly named preprocessor symbols. For instance, define \c EIGEN_ARRAYBASE_PLUGIN if you want to extend the ArrayBase class. A full list of classes that can be extended in this way and the corresponding preprocessor symbols can be found on our page \ref TopicPreprocessorDirectives.
- Here is an example of an extension file for adding methods to MatrixBase: \n
- \b MatrixBaseAddons.h
- \code
- inline Scalar at(uint i, uint j) const { return this->operator()(i,j); }
- inline Scalar& at(uint i, uint j) { return this->operator()(i,j); }
- inline Scalar at(uint i) const { return this->operator[](i); }
- inline Scalar& at(uint i) { return this->operator[](i); }
- inline RealScalar squaredLength() const { return squaredNorm(); }
- inline RealScalar length() const { return norm(); }
- inline RealScalar invLength(void) const { return fast_inv_sqrt(squaredNorm()); }
- template<typename OtherDerived>
- inline Scalar squaredDistanceTo(const MatrixBase<OtherDerived>& other) const
- { return (derived() - other.derived()).squaredNorm(); }
- template<typename OtherDerived>
- inline RealScalar distanceTo(const MatrixBase<OtherDerived>& other) const
- { return internal::sqrt(derived().squaredDistanceTo(other)); }
- inline void scaleTo(RealScalar l) { RealScalar vl = norm(); if (vl>1e-9) derived() *= (l/vl); }
- inline Transpose<Derived> transposed() {return this->transpose();}
- inline const Transpose<Derived> transposed() const {return this->transpose();}
- inline uint minComponentId(void) const { int i; this->minCoeff(&i); return i; }
- inline uint maxComponentId(void) const { int i; this->maxCoeff(&i); return i; }
- template<typename OtherDerived>
- void makeFloor(const MatrixBase<OtherDerived>& other) { derived() = derived().cwiseMin(other.derived()); }
- template<typename OtherDerived>
- void makeCeil(const MatrixBase<OtherDerived>& other) { derived() = derived().cwiseMax(other.derived()); }
- const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const ConstantReturnType>
- operator+(const Scalar& scalar) const
- { return CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const ConstantReturnType>(derived(), Constant(rows(),cols(),scalar)); }
- friend const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ConstantReturnType, Derived>
- operator+(const Scalar& scalar, const MatrixBase<Derived>& mat)
- { return CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ConstantReturnType, Derived>(Constant(rows(),cols(),scalar), mat.derived()); }
- \endcode
- Then one can the following declaration in the config.h or whatever prerequisites header file of his project:
- \code
- #define EIGEN_MATRIXBASE_PLUGIN "MatrixBaseAddons.h"
- \endcode
- */
- }
|