123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- //g++-4.4 -DNOMTL -Wl,-rpath /usr/local/lib/oski -L /usr/local/lib/oski/ -l oski -l oski_util -l oski_util_Tid -DOSKI -I ~/Coding/LinearAlgebra/mtl4/ spmv.cpp -I .. -O2 -DNDEBUG -lrt -lm -l oski_mat_CSC_Tid -loskilt && ./a.out r200000 c200000 n100 t1 p1
- #define SCALAR double
- #include <iostream>
- #include <algorithm>
- #include "BenchTimer.h"
- #include "BenchSparseUtil.h"
- #define SPMV_BENCH(CODE) BENCH(t,tries,repeats,CODE);
- // #ifdef MKL
- //
- // #include "mkl_types.h"
- // #include "mkl_spblas.h"
- //
- // template<typename Lhs,typename Rhs,typename Res>
- // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res)
- // {
- // char n = 'N';
- // float alpha = 1;
- // char matdescra[6];
- // matdescra[0] = 'G';
- // matdescra[1] = 0;
- // matdescra[2] = 0;
- // matdescra[3] = 'C';
- // mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra,
- // lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(),
- // pntre, b, &ldb, &beta, c, &ldc);
- // // mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1,
- // // lhs._valuePtr(), lhs.rows(), DST, dst_stride);
- // }
- //
- // #endif
- int main(int argc, char *argv[])
- {
- int size = 10000;
- int rows = size;
- int cols = size;
- int nnzPerCol = 40;
- int tries = 2;
- int repeats = 2;
- bool need_help = false;
- for(int i = 1; i < argc; i++)
- {
- if(argv[i][0] == 'r')
- {
- rows = atoi(argv[i]+1);
- }
- else if(argv[i][0] == 'c')
- {
- cols = atoi(argv[i]+1);
- }
- else if(argv[i][0] == 'n')
- {
- nnzPerCol = atoi(argv[i]+1);
- }
- else if(argv[i][0] == 't')
- {
- tries = atoi(argv[i]+1);
- }
- else if(argv[i][0] == 'p')
- {
- repeats = atoi(argv[i]+1);
- }
- else
- {
- need_help = true;
- }
- }
- if(need_help)
- {
- std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> t<nb tries> p<nb repeats>\n";
- return 1;
- }
- std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol << " non zeros per column. (" << repeats << " repeats, and " << tries << " tries)\n\n";
- EigenSparseMatrix sm(rows,cols);
- DenseVector dv(cols), res(rows);
- dv.setRandom();
- BenchTimer t;
- while (nnzPerCol>=4)
- {
- std::cout << "nnz: " << nnzPerCol << "\n";
- sm.setZero();
- fillMatrix2(nnzPerCol, rows, cols, sm);
- // dense matrices
- #ifdef DENSEMATRIX
- {
- DenseMatrix dm(rows,cols), (rows,cols);
- eiToDense(sm, dm);
- SPMV_BENCH(res = dm * sm);
- std::cout << "Dense " << t.value()/repeats << "\t";
- SPMV_BENCH(res = dm.transpose() * sm);
- std::cout << t.value()/repeats << endl;
- }
- #endif
- // eigen sparse matrices
- {
- SPMV_BENCH(res.noalias() += sm * dv; )
- std::cout << "Eigen " << t.value()/repeats << "\t";
- SPMV_BENCH(res.noalias() += sm.transpose() * dv; )
- std::cout << t.value()/repeats << endl;
- }
- // CSparse
- #ifdef CSPARSE
- {
- std::cout << "CSparse \n";
- cs *csm;
- eiToCSparse(sm, csm);
- // BENCH();
- // timer.stop();
- // std::cout << " a * b:\t" << timer.value() << endl;
- // BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } );
- // std::cout << " a * b:\t" << timer.value() << endl;
- }
- #endif
- #ifdef OSKI
- {
- oski_matrix_t om;
- oski_vecview_t ov, ores;
- oski_Init();
- om = oski_CreateMatCSC(sm._outerIndexPtr(), sm._innerIndexPtr(), sm._valuePtr(), rows, cols,
- SHARE_INPUTMAT, 1, INDEX_ZERO_BASED);
- ov = oski_CreateVecView(dv.data(), cols, STRIDE_UNIT);
- ores = oski_CreateVecView(res.data(), rows, STRIDE_UNIT);
- SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) );
- std::cout << "OSKI " << t.value()/repeats << "\t";
- SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) );
- std::cout << t.value()/repeats << "\n";
- // tune
- t.reset();
- t.start();
- oski_SetHintMatMult(om, OP_NORMAL, 1.0, SYMBOLIC_VEC, 0.0, SYMBOLIC_VEC, ALWAYS_TUNE_AGGRESSIVELY);
- oski_TuneMat(om);
- t.stop();
- double tuning = t.value();
- SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) );
- std::cout << "OSKI tuned " << t.value()/repeats << "\t";
- SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) );
- std::cout << t.value()/repeats << "\t(" << tuning << ")\n";
- oski_DestroyMat(om);
- oski_DestroyVecView(ov);
- oski_DestroyVecView(ores);
- oski_Close();
- }
- #endif
- #ifndef NOUBLAS
- {
- using namespace boost::numeric;
- UblasMatrix um(rows,cols);
- eiToUblas(sm, um);
- boost::numeric::ublas::vector<Scalar> uv(cols), ures(rows);
- Map<Matrix<Scalar,Dynamic,1> >(&uv[0], cols) = dv;
- Map<Matrix<Scalar,Dynamic,1> >(&ures[0], rows) = res;
- SPMV_BENCH(ublas::axpy_prod(um, uv, ures, true));
- std::cout << "ublas " << t.value()/repeats << "\t";
- SPMV_BENCH(ublas::axpy_prod(boost::numeric::ublas::trans(um), uv, ures, true));
- std::cout << t.value()/repeats << endl;
- }
- #endif
- // GMM++
- #ifndef NOGMM
- {
- GmmSparse gm(rows,cols);
- eiToGmm(sm, gm);
- std::vector<Scalar> gv(cols), gres(rows);
- Map<Matrix<Scalar,Dynamic,1> >(&gv[0], cols) = dv;
- Map<Matrix<Scalar,Dynamic,1> >(&gres[0], rows) = res;
- SPMV_BENCH(gmm::mult(gm, gv, gres));
- std::cout << "GMM++ " << t.value()/repeats << "\t";
- SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres));
- std::cout << t.value()/repeats << endl;
- }
- #endif
- // MTL4
- #ifndef NOMTL
- {
- MtlSparse mm(rows,cols);
- eiToMtl(sm, mm);
- mtl::dense_vector<Scalar> mv(cols, 1.0);
- mtl::dense_vector<Scalar> mres(rows, 1.0);
- SPMV_BENCH(mres = mm * mv);
- std::cout << "MTL4 " << t.value()/repeats << "\t";
- SPMV_BENCH(mres = trans(mm) * mv);
- std::cout << t.value()/repeats << endl;
- }
- #endif
- std::cout << "\n";
- if(nnzPerCol==1)
- break;
- nnzPerCol -= nnzPerCol/2;
- }
- return 0;
- }
|