123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- // Small bench routine for Eigen available in Eigen
- // (C) Desire NUENTSA WAKAM, INRIA
- #include <iostream>
- #include <fstream>
- #include <iomanip>
- #include <unsupported/Eigen/SparseExtra>
- #include <Eigen/SparseLU>
- #include <bench/BenchTimer.h>
- #ifdef EIGEN_METIS_SUPPORT
- #include <Eigen/MetisSupport>
- #endif
- using namespace std;
- using namespace Eigen;
- int main(int argc, char **args)
- {
- // typedef complex<double> scalar;
- typedef double scalar;
- SparseMatrix<scalar, ColMajor> A;
- typedef SparseMatrix<scalar, ColMajor>::Index Index;
- typedef Matrix<scalar, Dynamic, Dynamic> DenseMatrix;
- typedef Matrix<scalar, Dynamic, 1> DenseRhs;
- Matrix<scalar, Dynamic, 1> b, x, tmp;
- // SparseLU<SparseMatrix<scalar, ColMajor>, AMDOrdering<int> > solver;
- // #ifdef EIGEN_METIS_SUPPORT
- // SparseLU<SparseMatrix<scalar, ColMajor>, MetisOrdering<int> > solver;
- // std::cout<< "ORDERING : METIS\n";
- // #else
- SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver;
- std::cout<< "ORDERING : COLAMD\n";
- // #endif
-
- ifstream matrix_file;
- string line;
- int n;
- BenchTimer timer;
-
- // Set parameters
- /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
- if (argc < 2) assert(false && "please, give the matrix market file ");
- loadMarket(A, args[1]);
- cout << "End charging matrix " << endl;
- bool iscomplex=false, isvector=false;
- int sym;
- getMarketHeader(args[1], sym, iscomplex, isvector);
- // if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; }
- if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;}
- if (sym != 0) { // symmetric matrices, only the lower part is stored
- SparseMatrix<scalar, ColMajor> temp;
- temp = A;
- A = temp.selfadjointView<Lower>();
- }
- n = A.cols();
- /* Fill the right hand side */
- if (argc > 2)
- loadMarketVector(b, args[2]);
- else
- {
- b.resize(n);
- tmp.resize(n);
- // tmp.setRandom();
- for (int i = 0; i < n; i++) tmp(i) = i;
- b = A * tmp ;
- }
- /* Compute the factorization */
- // solver.isSymmetric(true);
- timer.start();
- // solver.compute(A);
- solver.analyzePattern(A);
- timer.stop();
- cout << "Time to analyze " << timer.value() << std::endl;
- timer.reset();
- timer.start();
- solver.factorize(A);
- timer.stop();
- cout << "Factorize Time " << timer.value() << std::endl;
- timer.reset();
- timer.start();
- x = solver.solve(b);
- timer.stop();
- cout << "solve time " << timer.value() << std::endl;
- /* Check the accuracy */
- Matrix<scalar, Dynamic, 1> tmp2 = b - A*x;
- scalar tempNorm = tmp2.norm()/b.norm();
- cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
- cout << "Number of nonzeros in the factor : " << solver.nnzL() + solver.nnzU() << std::endl;
-
- return 0;
- }
|