123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485 |
- //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
- //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
- // -DNOGMM -DNOMTL -DCSPARSE
- // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
- #ifndef SIZE
- #define SIZE 100000
- #endif
- #ifndef NBPERROW
- #define NBPERROW 24
- #endif
- #ifndef REPEAT
- #define REPEAT 2
- #endif
- #ifndef NBTRIES
- #define NBTRIES 2
- #endif
- #ifndef KK
- #define KK 10
- #endif
- #ifndef NOGOOGLE
- #define EIGEN_GOOGLEHASH_SUPPORT
- #include <google/sparse_hash_map>
- #endif
- #include "BenchSparseUtil.h"
- #define CHECK_MEM
- // #define CHECK_MEM std/**/::cout << "check mem\n"; getchar();
- #define BENCH(X) \
- timer.reset(); \
- for (int _j=0; _j<NBTRIES; ++_j) { \
- timer.start(); \
- for (int _k=0; _k<REPEAT; ++_k) { \
- X \
- } timer.stop(); }
- typedef std::vector<Vector2i> Coordinates;
- typedef std::vector<float> Values;
- EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals);
- EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords, const Values& vals);
- int main(int argc, char *argv[])
- {
- int rows = SIZE;
- int cols = SIZE;
- bool fullyrand = true;
- BenchTimer timer;
- Coordinates coords;
- Values values;
- if(fullyrand)
- {
- Coordinates pool;
- pool.reserve(cols*NBPERROW);
- std::cerr << "fill pool" << "\n";
- for (int i=0; i<cols*NBPERROW; )
- {
- // DynamicSparseMatrix<int> stencil(SIZE,SIZE);
- Vector2i ij(internal::random<int>(0,rows-1),internal::random<int>(0,cols-1));
- // if(stencil.coeffRef(ij.x(), ij.y())==0)
- {
- // stencil.coeffRef(ij.x(), ij.y()) = 1;
- pool.push_back(ij);
- }
- ++i;
- }
- std::cerr << "pool ok" << "\n";
- int n = cols*NBPERROW*KK;
- coords.reserve(n);
- values.reserve(n);
- for (int i=0; i<n; ++i)
- {
- int i = internal::random<int>(0,pool.size());
- coords.push_back(pool[i]);
- values.push_back(internal::random<Scalar>());
- }
- }
- else
- {
- for (int j=0; j<cols; ++j)
- for (int i=0; i<NBPERROW; ++i)
- {
- coords.push_back(Vector2i(internal::random<int>(0,rows-1),j));
- values.push_back(internal::random<Scalar>());
- }
- }
- std::cout << "nnz = " << coords.size() << "\n";
- CHECK_MEM
- // dense matrices
- #ifdef DENSEMATRIX
- {
- BENCH(setrand_eigen_dense(coords,values);)
- std::cout << "Eigen Dense\t" << timer.value() << "\n";
- }
- #endif
- // eigen sparse matrices
- // if (!fullyrand)
- // {
- // BENCH(setinnerrand_eigen(coords,values);)
- // std::cout << "Eigen fillrand\t" << timer.value() << "\n";
- // }
- {
- BENCH(setrand_eigen_dynamic(coords,values);)
- std::cout << "Eigen dynamic\t" << timer.value() << "\n";
- }
- // {
- // BENCH(setrand_eigen_compact(coords,values);)
- // std::cout << "Eigen compact\t" << timer.value() << "\n";
- // }
- {
- BENCH(setrand_eigen_sumeq(coords,values);)
- std::cout << "Eigen sumeq\t" << timer.value() << "\n";
- }
- {
- // BENCH(setrand_eigen_gnu_hash(coords,values);)
- // std::cout << "Eigen std::map\t" << timer.value() << "\n";
- }
- {
- BENCH(setrand_scipy(coords,values);)
- std::cout << "scipy\t" << timer.value() << "\n";
- }
- #ifndef NOGOOGLE
- {
- BENCH(setrand_eigen_google_dense(coords,values);)
- std::cout << "Eigen google dense\t" << timer.value() << "\n";
- }
- {
- BENCH(setrand_eigen_google_sparse(coords,values);)
- std::cout << "Eigen google sparse\t" << timer.value() << "\n";
- }
- #endif
- #ifndef NOUBLAS
- {
- // BENCH(setrand_ublas_mapped(coords,values);)
- // std::cout << "ublas mapped\t" << timer.value() << "\n";
- }
- {
- BENCH(setrand_ublas_genvec(coords,values);)
- std::cout << "ublas vecofvec\t" << timer.value() << "\n";
- }
- /*{
- timer.reset();
- timer.start();
- for (int k=0; k<REPEAT; ++k)
- setrand_ublas_compressed(coords,values);
- timer.stop();
- std::cout << "ublas comp\t" << timer.value() << "\n";
- }
- {
- timer.reset();
- timer.start();
- for (int k=0; k<REPEAT; ++k)
- setrand_ublas_coord(coords,values);
- timer.stop();
- std::cout << "ublas coord\t" << timer.value() << "\n";
- }*/
- #endif
- // MTL4
- #ifndef NOMTL
- {
- BENCH(setrand_mtl(coords,values));
- std::cout << "MTL\t" << timer.value() << "\n";
- }
- #endif
- return 0;
- }
- EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals)
- {
- using namespace Eigen;
- SparseMatrix<Scalar> mat(SIZE,SIZE);
- //mat.startFill(2000000/*coords.size()*/);
- for (int i=0; i<coords.size(); ++i)
- {
- mat.insert(coords[i].x(), coords[i].y()) = vals[i];
- }
- mat.finalize();
- CHECK_MEM;
- return 0;
- }
- EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals)
- {
- using namespace Eigen;
- DynamicSparseMatrix<Scalar> mat(SIZE,SIZE);
- mat.reserve(coords.size()/10);
- for (int i=0; i<coords.size(); ++i)
- {
- mat.coeffRef(coords[i].x(), coords[i].y()) += vals[i];
- }
- mat.finalize();
- CHECK_MEM;
- return &mat.coeffRef(coords[0].x(), coords[0].y());
- }
- EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals)
- {
- using namespace Eigen;
- int n = coords.size()/KK;
- DynamicSparseMatrix<Scalar> mat(SIZE,SIZE);
- for (int j=0; j<KK; ++j)
- {
- DynamicSparseMatrix<Scalar> aux(SIZE,SIZE);
- mat.reserve(n);
- for (int i=j*n; i<(j+1)*n; ++i)
- {
- aux.insert(coords[i].x(), coords[i].y()) += vals[i];
- }
- aux.finalize();
- mat += aux;
- }
- return &mat.coeffRef(coords[0].x(), coords[0].y());
- }
- EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals)
- {
- using namespace Eigen;
- DynamicSparseMatrix<Scalar> setter(SIZE,SIZE);
- setter.reserve(coords.size()/10);
- for (int i=0; i<coords.size(); ++i)
- {
- setter.coeffRef(coords[i].x(), coords[i].y()) += vals[i];
- }
- SparseMatrix<Scalar> mat = setter;
- CHECK_MEM;
- return &mat.coeffRef(coords[0].x(), coords[0].y());
- }
- EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals)
- {
- using namespace Eigen;
- SparseMatrix<Scalar> mat(SIZE,SIZE);
- {
- RandomSetter<SparseMatrix<Scalar>, StdMapTraits > setter(mat);
- for (int i=0; i<coords.size(); ++i)
- {
- setter(coords[i].x(), coords[i].y()) += vals[i];
- }
- CHECK_MEM;
- }
- return &mat.coeffRef(coords[0].x(), coords[0].y());
- }
- #ifndef NOGOOGLE
- EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals)
- {
- using namespace Eigen;
- SparseMatrix<Scalar> mat(SIZE,SIZE);
- {
- RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat);
- for (int i=0; i<coords.size(); ++i)
- setter(coords[i].x(), coords[i].y()) += vals[i];
- CHECK_MEM;
- }
- return &mat.coeffRef(coords[0].x(), coords[0].y());
- }
- EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals)
- {
- using namespace Eigen;
- SparseMatrix<Scalar> mat(SIZE,SIZE);
- {
- RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat);
- for (int i=0; i<coords.size(); ++i)
- setter(coords[i].x(), coords[i].y()) += vals[i];
- CHECK_MEM;
- }
- return &mat.coeffRef(coords[0].x(), coords[0].y());
- }
- #endif
- template <class T>
- void coo_tocsr(const int n_row,
- const int n_col,
- const int nnz,
- const Coordinates Aij,
- const Values Ax,
- int Bp[],
- int Bj[],
- T Bx[])
- {
- //compute number of non-zero entries per row of A coo_tocsr
- std::fill(Bp, Bp + n_row, 0);
- for (int n = 0; n < nnz; n++){
- Bp[Aij[n].x()]++;
- }
- //cumsum the nnz per row to get Bp[]
- for(int i = 0, cumsum = 0; i < n_row; i++){
- int temp = Bp[i];
- Bp[i] = cumsum;
- cumsum += temp;
- }
- Bp[n_row] = nnz;
- //write Aj,Ax into Bj,Bx
- for(int n = 0; n < nnz; n++){
- int row = Aij[n].x();
- int dest = Bp[row];
- Bj[dest] = Aij[n].y();
- Bx[dest] = Ax[n];
- Bp[row]++;
- }
- for(int i = 0, last = 0; i <= n_row; i++){
- int temp = Bp[i];
- Bp[i] = last;
- last = temp;
- }
- //now Bp,Bj,Bx form a CSR representation (with possible duplicates)
- }
- template< class T1, class T2 >
- bool kv_pair_less(const std::pair<T1,T2>& x, const std::pair<T1,T2>& y){
- return x.first < y.first;
- }
- template<class I, class T>
- void csr_sort_indices(const I n_row,
- const I Ap[],
- I Aj[],
- T Ax[])
- {
- std::vector< std::pair<I,T> > temp;
- for(I i = 0; i < n_row; i++){
- I row_start = Ap[i];
- I row_end = Ap[i+1];
- temp.clear();
- for(I jj = row_start; jj < row_end; jj++){
- temp.push_back(std::make_pair(Aj[jj],Ax[jj]));
- }
- std::sort(temp.begin(),temp.end(),kv_pair_less<I,T>);
- for(I jj = row_start, n = 0; jj < row_end; jj++, n++){
- Aj[jj] = temp[n].first;
- Ax[jj] = temp[n].second;
- }
- }
- }
- template <class I, class T>
- void csr_sum_duplicates(const I n_row,
- const I n_col,
- I Ap[],
- I Aj[],
- T Ax[])
- {
- I nnz = 0;
- I row_end = 0;
- for(I i = 0; i < n_row; i++){
- I jj = row_end;
- row_end = Ap[i+1];
- while( jj < row_end ){
- I j = Aj[jj];
- T x = Ax[jj];
- jj++;
- while( jj < row_end && Aj[jj] == j ){
- x += Ax[jj];
- jj++;
- }
- Aj[nnz] = j;
- Ax[nnz] = x;
- nnz++;
- }
- Ap[i+1] = nnz;
- }
- }
- EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals)
- {
- using namespace Eigen;
- SparseMatrix<Scalar> mat(SIZE,SIZE);
- mat.resizeNonZeros(coords.size());
- // std::cerr << "setrand_scipy...\n";
- coo_tocsr<Scalar>(SIZE,SIZE, coords.size(), coords, vals, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
- // std::cerr << "coo_tocsr ok\n";
- csr_sort_indices(SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
- csr_sum_duplicates(SIZE, SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
- mat.resizeNonZeros(mat._outerIndexPtr()[SIZE]);
- return &mat.coeffRef(coords[0].x(), coords[0].y());
- }
- #ifndef NOUBLAS
- EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals)
- {
- using namespace boost;
- using namespace boost::numeric;
- using namespace boost::numeric::ublas;
- mapped_matrix<Scalar> aux(SIZE,SIZE);
- for (int i=0; i<coords.size(); ++i)
- {
- aux(coords[i].x(), coords[i].y()) += vals[i];
- }
- CHECK_MEM;
- compressed_matrix<Scalar> mat(aux);
- return 0;// &mat(coords[0].x(), coords[0].y());
- }
- /*EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals)
- {
- using namespace boost;
- using namespace boost::numeric;
- using namespace boost::numeric::ublas;
- coordinate_matrix<Scalar> aux(SIZE,SIZE);
- for (int i=0; i<coords.size(); ++i)
- {
- aux(coords[i].x(), coords[i].y()) = vals[i];
- }
- compressed_matrix<Scalar> mat(aux);
- return 0;//&mat(coords[0].x(), coords[0].y());
- }
- EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals)
- {
- using namespace boost;
- using namespace boost::numeric;
- using namespace boost::numeric::ublas;
- compressed_matrix<Scalar> mat(SIZE,SIZE);
- for (int i=0; i<coords.size(); ++i)
- {
- mat(coords[i].x(), coords[i].y()) = vals[i];
- }
- return 0;//&mat(coords[0].x(), coords[0].y());
- }*/
- EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals)
- {
- using namespace boost;
- using namespace boost::numeric;
- using namespace boost::numeric::ublas;
- // ublas::vector<coordinate_vector<Scalar> > foo;
- generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE,SIZE);
- for (int i=0; i<coords.size(); ++i)
- {
- aux(coords[i].x(), coords[i].y()) += vals[i];
- }
- CHECK_MEM;
- compressed_matrix<Scalar,row_major> mat(aux);
- return 0;//&mat(coords[0].x(), coords[0].y());
- }
- #endif
- #ifndef NOMTL
- EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords, const Values& vals);
- #endif
|