123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
- //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
- // -DNOGMM -DNOMTL -DCSPARSE
- // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
- #ifndef SIZE
- #define SIZE 650000
- #endif
- #ifndef DENSITY
- #define DENSITY 0.01
- #endif
- #ifndef REPEAT
- #define REPEAT 1
- #endif
- #include "BenchSparseUtil.h"
- #ifndef MINDENSITY
- #define MINDENSITY 0.0004
- #endif
- #ifndef NBTRIES
- #define NBTRIES 10
- #endif
- #define BENCH(X) \
- timer.reset(); \
- for (int _j=0; _j<NBTRIES; ++_j) { \
- timer.start(); \
- for (int _k=0; _k<REPEAT; ++_k) { \
- X \
- } timer.stop(); }
- #ifdef CSPARSE
- cs* cs_sorted_multiply(const cs* a, const cs* b)
- {
- cs* A = cs_transpose (a, 1) ;
- cs* B = cs_transpose (b, 1) ;
- cs* D = cs_multiply (B,A) ; /* D = B'*A' */
- cs_spfree (A) ;
- cs_spfree (B) ;
- cs_dropzeros (D) ; /* drop zeros from D */
- cs* C = cs_transpose (D, 1) ; /* C = D', so that C is sorted */
- cs_spfree (D) ;
- return C;
- }
- #endif
- int main(int argc, char *argv[])
- {
- int rows = SIZE;
- int cols = SIZE;
- float density = DENSITY;
- EigenSparseMatrix sm1(rows,cols);
- DenseVector v1(cols), v2(cols);
- v1.setRandom();
- BenchTimer timer;
- for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
- {
- //fillMatrix(density, rows, cols, sm1);
- fillMatrix2(7, rows, cols, sm1);
- // dense matrices
- #ifdef DENSEMATRIX
- {
- std::cout << "Eigen Dense\t" << density*100 << "%\n";
- DenseMatrix m1(rows,cols);
- eiToDense(sm1, m1);
- timer.reset();
- timer.start();
- for (int k=0; k<REPEAT; ++k)
- v2 = m1 * v1;
- timer.stop();
- std::cout << " a * v:\t" << timer.best() << " " << double(REPEAT)/timer.best() << " * / sec " << endl;
- timer.reset();
- timer.start();
- for (int k=0; k<REPEAT; ++k)
- v2 = m1.transpose() * v1;
- timer.stop();
- std::cout << " a' * v:\t" << timer.best() << endl;
- }
- #endif
- // eigen sparse matrices
- {
- std::cout << "Eigen sparse\t" << sm1.nonZeros()/float(sm1.rows()*sm1.cols())*100 << "%\n";
- BENCH(asm("#myc"); v2 = sm1 * v1; asm("#myd");)
- std::cout << " a * v:\t" << timer.best()/REPEAT << " " << double(REPEAT)/timer.best(REAL_TIMER) << " * / sec " << endl;
- BENCH( { asm("#mya"); v2 = sm1.transpose() * v1; asm("#myb"); })
- std::cout << " a' * v:\t" << timer.best()/REPEAT << endl;
- }
- // {
- // DynamicSparseMatrix<Scalar> m1(sm1);
- // std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/float(m1.rows()*m1.cols())*100 << "%\n";
- //
- // BENCH(for (int k=0; k<REPEAT; ++k) v2 = m1 * v1;)
- // std::cout << " a * v:\t" << timer.value() << endl;
- //
- // BENCH(for (int k=0; k<REPEAT; ++k) v2 = m1.transpose() * v1;)
- // std::cout << " a' * v:\t" << timer.value() << endl;
- // }
- // GMM++
- #ifndef NOGMM
- {
- std::cout << "GMM++ sparse\t" << density*100 << "%\n";
- //GmmDynSparse gmmT3(rows,cols);
- GmmSparse m1(rows,cols);
- eiToGmm(sm1, m1);
- std::vector<Scalar> gmmV1(cols), gmmV2(cols);
- Map<Matrix<Scalar,Dynamic,1> >(&gmmV1[0], cols) = v1;
- Map<Matrix<Scalar,Dynamic,1> >(&gmmV2[0], cols) = v2;
- BENCH( asm("#myx"); gmm::mult(m1, gmmV1, gmmV2); asm("#myy"); )
- std::cout << " a * v:\t" << timer.value() << endl;
- BENCH( gmm::mult(gmm::transposed(m1), gmmV1, gmmV2); )
- std::cout << " a' * v:\t" << timer.value() << endl;
- }
- #endif
-
- #ifndef NOUBLAS
- {
- std::cout << "ublas sparse\t" << density*100 << "%\n";
- UBlasSparse m1(rows,cols);
- eiToUblas(sm1, m1);
-
- boost::numeric::ublas::vector<Scalar> uv1, uv2;
- eiToUblasVec(v1,uv1);
- eiToUblasVec(v2,uv2);
- // std::vector<Scalar> gmmV1(cols), gmmV2(cols);
- // Map<Matrix<Scalar,Dynamic,1> >(&gmmV1[0], cols) = v1;
- // Map<Matrix<Scalar,Dynamic,1> >(&gmmV2[0], cols) = v2;
- BENCH( uv2 = boost::numeric::ublas::prod(m1, uv1); )
- std::cout << " a * v:\t" << timer.value() << endl;
- // BENCH( boost::ublas::prod(gmm::transposed(m1), gmmV1, gmmV2); )
- // std::cout << " a' * v:\t" << timer.value() << endl;
- }
- #endif
- // MTL4
- #ifndef NOMTL
- {
- std::cout << "MTL4\t" << density*100 << "%\n";
- MtlSparse m1(rows,cols);
- eiToMtl(sm1, m1);
- mtl::dense_vector<Scalar> mtlV1(cols, 1.0);
- mtl::dense_vector<Scalar> mtlV2(cols, 1.0);
- timer.reset();
- timer.start();
- for (int k=0; k<REPEAT; ++k)
- mtlV2 = m1 * mtlV1;
- timer.stop();
- std::cout << " a * v:\t" << timer.value() << endl;
- timer.reset();
- timer.start();
- for (int k=0; k<REPEAT; ++k)
- mtlV2 = trans(m1) * mtlV1;
- timer.stop();
- std::cout << " a' * v:\t" << timer.value() << endl;
- }
- #endif
- std::cout << "\n\n";
- }
- return 0;
- }
|