123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- // #define EIGEN_TAUCS_SUPPORT
- // #define EIGEN_CHOLMOD_SUPPORT
- #include <iostream>
- #include <Eigen/Sparse>
- // g++ -DSIZE=10000 -DDENSITY=0.001 sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG -DNBTRIES=1 -I /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/ -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out
- #define NOGMM
- #define NOMTL
- #ifndef SIZE
- #define SIZE 10
- #endif
- #ifndef DENSITY
- #define DENSITY 0.01
- #endif
- #ifndef REPEAT
- #define REPEAT 1
- #endif
- #include "BenchSparseUtil.h"
- #ifndef MINDENSITY
- #define MINDENSITY 0.0004
- #endif
- #ifndef NBTRIES
- #define NBTRIES 10
- #endif
- #define BENCH(X) \
- timer.reset(); \
- for (int _j=0; _j<NBTRIES; ++_j) { \
- timer.start(); \
- for (int _k=0; _k<REPEAT; ++_k) { \
- X \
- } timer.stop(); }
- // typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix;
- typedef SparseMatrix<Scalar,SelfAdjoint|LowerTriangular> EigenSparseSelfAdjointMatrix;
- void fillSpdMatrix(float density, int rows, int cols, EigenSparseSelfAdjointMatrix& dst)
- {
- dst.startFill(rows*cols*density);
- for(int j = 0; j < cols; j++)
- {
- dst.fill(j,j) = internal::random<Scalar>(10,20);
- for(int i = j+1; i < rows; i++)
- {
- Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0;
- if (v!=0)
- dst.fill(i,j) = v;
- }
- }
- dst.endFill();
- }
- #include <Eigen/Cholesky>
- template<int Backend>
- void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flags = 0)
- {
- std::cout << name << "..." << std::flush;
- BenchTimer timer;
- timer.start();
- SparseLLT<EigenSparseSelfAdjointMatrix,Backend> chol(sm1, flags);
- timer.stop();
- std::cout << ":\t" << timer.value() << endl;
- std::cout << " nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n";
- // std::cout << "sparse\n" << chol.matrixL() << "%\n";
- }
- int main(int argc, char *argv[])
- {
- int rows = SIZE;
- int cols = SIZE;
- float density = DENSITY;
- BenchTimer timer;
- VectorXf b = VectorXf::Random(cols);
- VectorXf x = VectorXf::Random(cols);
- bool densedone = false;
- //for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
- // float density = 0.5;
- {
- EigenSparseSelfAdjointMatrix sm1(rows, cols);
- std::cout << "Generate sparse matrix (might take a while)...\n";
- fillSpdMatrix(density, rows, cols, sm1);
- std::cout << "DONE\n\n";
- // dense matrices
- #ifdef DENSEMATRIX
- if (!densedone)
- {
- densedone = true;
- std::cout << "Eigen Dense\t" << density*100 << "%\n";
- DenseMatrix m1(rows,cols);
- eiToDense(sm1, m1);
- m1 = (m1 + m1.transpose()).eval();
- m1.diagonal() *= 0.5;
- // BENCH(LLT<DenseMatrix> chol(m1);)
- // std::cout << "dense:\t" << timer.value() << endl;
- BenchTimer timer;
- timer.start();
- LLT<DenseMatrix> chol(m1);
- timer.stop();
- std::cout << "dense:\t" << timer.value() << endl;
- int count = 0;
- for (int j=0; j<cols; ++j)
- for (int i=j; i<rows; ++i)
- if (!internal::isMuchSmallerThan(internal::abs(chol.matrixL()(i,j)), 0.1))
- count++;
- std::cout << "dense: " << "nnz = " << count << "\n";
- // std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl;
- }
- #endif
- // eigen sparse matrices
- doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization);
- #ifdef EIGEN_CHOLMOD_SUPPORT
- doEigen<Eigen::Cholmod>("Eigen/Cholmod", sm1, Eigen::IncompleteFactorization);
- #endif
- #ifdef EIGEN_TAUCS_SUPPORT
- doEigen<Eigen::Taucs>("Eigen/Taucs", sm1, Eigen::IncompleteFactorization);
- #endif
- #if 0
- // TAUCS
- {
- taucs_ccs_matrix A = sm1.asTaucsMatrix();
- //BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);)
- // BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));)
- // std::cout << "taucs:\t" << timer.value() << endl;
- taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);
- for (int j=0; j<cols; ++j)
- {
- for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
- std::cout << chol->values.d[i] << " ";
- }
- }
- // CHOLMOD
- #ifdef EIGEN_CHOLMOD_SUPPORT
- {
- cholmod_common c;
- cholmod_start (&c);
- cholmod_sparse A;
- cholmod_factor *L;
- A = sm1.asCholmodMatrix();
- BenchTimer timer;
- // timer.reset();
- timer.start();
- std::vector<int> perm(cols);
- // std::vector<int> set(ncols);
- for (int i=0; i<cols; ++i)
- perm[i] = i;
- // c.nmethods = 1;
- // c.method[0] = 1;
- c.nmethods = 1;
- c.method [0].ordering = CHOLMOD_NATURAL;
- c.postorder = 0;
- c.final_ll = 1;
- L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c);
- timer.stop();
- std::cout << "cholmod/analyze:\t" << timer.value() << endl;
- timer.reset();
- timer.start();
- cholmod_factorize(&A, L, &c);
- timer.stop();
- std::cout << "cholmod/factorize:\t" << timer.value() << endl;
- cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c);
- cholmod_print_factor(L, "Factors", &c);
- cholmod_print_sparse(cholmat, "Chol", &c);
- cholmod_write_sparse(stdout, cholmat, 0, 0, &c);
- //
- // cholmod_print_sparse(&A, "A", &c);
- // cholmod_write_sparse(stdout, &A, 0, 0, &c);
- // for (int j=0; j<cols; ++j)
- // {
- // for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
- // std::cout << chol->values.s[i] << " ";
- // }
- }
- #endif
- #endif
- }
- return 0;
- }
|