123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- // g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2 ./a.out
- // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp && OMP_NUM_THREADS=2 ./a.out
- // Compilation options:
- //
- // -DSCALAR=std::complex<double>
- // -DSCALARA=double or -DSCALARB=double
- // -DHAVE_BLAS
- // -DDECOUPLED
- //
- #include <iostream>
- #include <bench/BenchTimer.h>
- #include <Eigen/Core>
- using namespace std;
- using namespace Eigen;
- #ifndef SCALAR
- // #define SCALAR std::complex<float>
- #define SCALAR float
- #endif
- #ifndef SCALARA
- #define SCALARA SCALAR
- #endif
- #ifndef SCALARB
- #define SCALARB SCALAR
- #endif
- #ifdef ROWMAJ_A
- const int opt_A = RowMajor;
- #else
- const int opt_A = ColMajor;
- #endif
- #ifdef ROWMAJ_B
- const int opt_B = RowMajor;
- #else
- const int opt_B = ColMajor;
- #endif
- typedef SCALAR Scalar;
- typedef NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<SCALARA,Dynamic,Dynamic,opt_A> A;
- typedef Matrix<SCALARB,Dynamic,Dynamic,opt_B> B;
- typedef Matrix<Scalar,Dynamic,Dynamic> C;
- typedef Matrix<RealScalar,Dynamic,Dynamic> M;
- #ifdef HAVE_BLAS
- extern "C" {
- #include <Eigen/src/misc/blas.h>
- }
- static float fone = 1;
- static float fzero = 0;
- static double done = 1;
- static double szero = 0;
- static std::complex<float> cfone = 1;
- static std::complex<float> cfzero = 0;
- static std::complex<double> cdone = 1;
- static std::complex<double> cdzero = 0;
- static char notrans = 'N';
- static char trans = 'T';
- static char nonunit = 'N';
- static char lower = 'L';
- static char right = 'R';
- static int intone = 1;
- #ifdef ROWMAJ_A
- const char transA = trans;
- #else
- const char transA = notrans;
- #endif
- #ifdef ROWMAJ_B
- const char transB = trans;
- #else
- const char transB = notrans;
- #endif
- template<typename A,typename B>
- void blas_gemm(const A& a, const B& b, MatrixXf& c)
- {
- int M = c.rows(); int N = c.cols(); int K = a.cols();
- int lda = a.outerStride(); int ldb = b.outerStride(); int ldc = c.rows();
- sgemm_(&transA,&transB,&M,&N,&K,&fone,
- const_cast<float*>(a.data()),&lda,
- const_cast<float*>(b.data()),&ldb,&fone,
- c.data(),&ldc);
- }
- template<typename A,typename B>
- void blas_gemm(const A& a, const B& b, MatrixXd& c)
- {
- int M = c.rows(); int N = c.cols(); int K = a.cols();
- int lda = a.outerStride(); int ldb = b.outerStride(); int ldc = c.rows();
- dgemm_(&transA,&transB,&M,&N,&K,&done,
- const_cast<double*>(a.data()),&lda,
- const_cast<double*>(b.data()),&ldb,&done,
- c.data(),&ldc);
- }
- template<typename A,typename B>
- void blas_gemm(const A& a, const B& b, MatrixXcf& c)
- {
- int M = c.rows(); int N = c.cols(); int K = a.cols();
- int lda = a.outerStride(); int ldb = b.outerStride(); int ldc = c.rows();
- cgemm_(&transA,&transB,&M,&N,&K,(float*)&cfone,
- const_cast<float*>((const float*)a.data()),&lda,
- const_cast<float*>((const float*)b.data()),&ldb,(float*)&cfone,
- (float*)c.data(),&ldc);
- }
- template<typename A,typename B>
- void blas_gemm(const A& a, const B& b, MatrixXcd& c)
- {
- int M = c.rows(); int N = c.cols(); int K = a.cols();
- int lda = a.outerStride(); int ldb = b.outerStride(); int ldc = c.rows();
- zgemm_(&transA,&transB,&M,&N,&K,(double*)&cdone,
- const_cast<double*>((const double*)a.data()),&lda,
- const_cast<double*>((const double*)b.data()),&ldb,(double*)&cdone,
- (double*)c.data(),&ldc);
- }
- #endif
- void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci)
- {
- cr.noalias() += ar * br;
- cr.noalias() -= ai * bi;
- ci.noalias() += ar * bi;
- ci.noalias() += ai * br;
- // [cr ci] += [ar ai] * br + [-ai ar] * bi
- }
- void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci)
- {
- cr.noalias() += a * br;
- ci.noalias() += a * bi;
- }
- void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci)
- {
- cr.noalias() += ar * b;
- ci.noalias() += ai * b;
- }
- template<typename A, typename B, typename C>
- EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c)
- {
- c.noalias() += a * b;
- }
- int main(int argc, char ** argv)
- {
- std::ptrdiff_t l1 = internal::queryL1CacheSize();
- std::ptrdiff_t l2 = internal::queryTopLevelCacheSize();
- std::cout << "L1 cache size = " << (l1>0 ? l1/1024 : -1) << " KB\n";
- std::cout << "L2/L3 cache size = " << (l2>0 ? l2/1024 : -1) << " KB\n";
- typedef internal::gebp_traits<Scalar,Scalar> Traits;
- std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n";
- int rep = 1; // number of repetitions per try
- int tries = 2; // number of tries, we keep the best
- int s = 2048;
- int m = s;
- int n = s;
- int p = s;
- int cache_size1=-1, cache_size2=l2, cache_size3 = 0;
- bool need_help = false;
- for (int i=1; i<argc;)
- {
- if(argv[i][0]=='-')
- {
- if(argv[i][1]=='s')
- {
- ++i;
- s = atoi(argv[i++]);
- m = n = p = s;
- if(argv[i][0]!='-')
- {
- n = atoi(argv[i++]);
- p = atoi(argv[i++]);
- }
- }
- else if(argv[i][1]=='c')
- {
- ++i;
- cache_size1 = atoi(argv[i++]);
- if(argv[i][0]!='-')
- {
- cache_size2 = atoi(argv[i++]);
- if(argv[i][0]!='-')
- cache_size3 = atoi(argv[i++]);
- }
- }
- else if(argv[i][1]=='t')
- {
- tries = atoi(argv[++i]);
- ++i;
- }
- else if(argv[i][1]=='p')
- {
- ++i;
- rep = atoi(argv[i++]);
- }
- }
- else
- {
- need_help = true;
- break;
- }
- }
- if(need_help)
- {
- std::cout << argv[0] << " -s <matrix sizes> -c <cache sizes> -t <nb tries> -p <nb repeats>\n";
- std::cout << " <matrix sizes> : size\n";
- std::cout << " <matrix sizes> : rows columns depth\n";
- return 1;
- }
- #if EIGEN_VERSION_AT_LEAST(3,2,90)
- if(cache_size1>0)
- setCpuCacheSizes(cache_size1,cache_size2,cache_size3);
- #endif
-
- A a(m,p); a.setRandom();
- B b(p,n); b.setRandom();
- C c(m,n); c.setOnes();
- C rc = c;
- std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n";
- std::ptrdiff_t mc(m), nc(n), kc(p);
- internal::computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
- std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << " x " << nc << "\n";
- C r = c;
- // check the parallel product is correct
- #if defined EIGEN_HAS_OPENMP
- Eigen::initParallel();
- int procs = omp_get_max_threads();
- if(procs>1)
- {
- #ifdef HAVE_BLAS
- blas_gemm(a,b,r);
- #else
- omp_set_num_threads(1);
- r.noalias() += a * b;
- omp_set_num_threads(procs);
- #endif
- c.noalias() += a * b;
- if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n";
- }
- #elif defined HAVE_BLAS
- blas_gemm(a,b,r);
- c.noalias() += a * b;
- if(!r.isApprox(c)) {
- std::cout << (r - c).norm()/r.norm() << "\n";
- std::cerr << "Warning, your product is crap!\n\n";
- }
- #else
- if(1.*m*n*p<2000.*2000*2000)
- {
- gemm(a,b,c);
- r.noalias() += a.cast<Scalar>() .lazyProduct( b.cast<Scalar>() );
- if(!r.isApprox(c)) {
- std::cout << (r - c).norm()/r.norm() << "\n";
- std::cerr << "Warning, your product is crap!\n\n";
- }
- }
- #endif
- #ifdef HAVE_BLAS
- BenchTimer tblas;
- c = rc;
- BENCH(tblas, tries, rep, blas_gemm(a,b,c));
- std::cout << "blas cpu " << tblas.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(CPU_TIMER) << "s)\n";
- std::cout << "blas real " << tblas.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n";
- #endif
- // warm start
- if(b.norm()+a.norm()==123.554) std::cout << "\n";
- BenchTimer tmt;
- c = rc;
- BENCH(tmt, tries, rep, gemm(a,b,c));
- std::cout << "eigen cpu " << tmt.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n";
- std::cout << "eigen real " << tmt.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n";
- #ifdef EIGEN_HAS_OPENMP
- if(procs>1)
- {
- BenchTimer tmono;
- omp_set_num_threads(1);
- Eigen::setNbThreads(1);
- c = rc;
- BENCH(tmono, tries, rep, gemm(a,b,c));
- std::cout << "eigen mono cpu " << tmono.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(CPU_TIMER) << "s)\n";
- std::cout << "eigen mono real " << tmono.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n";
- std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER) << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n";
- }
- #endif
-
- if(1.*m*n*p<30*30*30)
- {
- BenchTimer tmt;
- c = rc;
- BENCH(tmt, tries, rep, c.noalias()+=a.lazyProduct(b));
- std::cout << "lazy cpu " << tmt.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n";
- std::cout << "lazy real " << tmt.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n";
- }
-
- #ifdef DECOUPLED
- if((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex))
- {
- M ar(m,p); ar.setRandom();
- M ai(m,p); ai.setRandom();
- M br(p,n); br.setRandom();
- M bi(p,n); bi.setRandom();
- M cr(m,n); cr.setRandom();
- M ci(m,n); ci.setRandom();
-
- BenchTimer t;
- BENCH(t, tries, rep, matlab_cplx_cplx(ar,ai,br,bi,cr,ci));
- std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n";
- std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
- }
- if((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex))
- {
- M a(m,p); a.setRandom();
- M br(p,n); br.setRandom();
- M bi(p,n); bi.setRandom();
- M cr(m,n); cr.setRandom();
- M ci(m,n); ci.setRandom();
-
- BenchTimer t;
- BENCH(t, tries, rep, matlab_real_cplx(a,br,bi,cr,ci));
- std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n";
- std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
- }
- if((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex))
- {
- M ar(m,p); ar.setRandom();
- M ai(m,p); ai.setRandom();
- M b(p,n); b.setRandom();
- M cr(m,n); cr.setRandom();
- M ci(m,n); ci.setRandom();
-
- BenchTimer t;
- BENCH(t, tries, rep, matlab_cplx_real(ar,ai,b,cr,ci));
- std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n";
- std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
- }
- #endif
- return 0;
- }
|