chengkaiqiang e6b2cb2e99 DYZBC_20250121 1 hónapja
..
.github e6b2cb2e99 DYZBC_20250121 1 hónapja
android e6b2cb2e99 DYZBC_20250121 1 hónapja
cmake e6b2cb2e99 DYZBC_20250121 1 hónapja
docs e6b2cb2e99 DYZBC_20250121 1 hónapja
examples e6b2cb2e99 DYZBC_20250121 1 hónapja
gallery e6b2cb2e99 DYZBC_20250121 1 hónapja
ios e6b2cb2e99 DYZBC_20250121 1 hónapja
packaging e6b2cb2e99 DYZBC_20250121 1 hónapja
references e6b2cb2e99 DYZBC_20250121 1 hónapja
scripts e6b2cb2e99 DYZBC_20250121 1 hónapja
test e6b2cb2e99 DYZBC_20250121 1 hónapja
torchvision e6b2cb2e99 DYZBC_20250121 1 hónapja
.clang-format e6b2cb2e99 DYZBC_20250121 1 hónapja
.git-blame-ignore-revs e6b2cb2e99 DYZBC_20250121 1 hónapja
.gitattributes e6b2cb2e99 DYZBC_20250121 1 hónapja
.gitignore e6b2cb2e99 DYZBC_20250121 1 hónapja
.pre-commit-config.yaml e6b2cb2e99 DYZBC_20250121 1 hónapja
CITATION.cff e6b2cb2e99 DYZBC_20250121 1 hónapja
CMakeLists.txt e6b2cb2e99 DYZBC_20250121 1 hónapja
CODE_OF_CONDUCT.md e6b2cb2e99 DYZBC_20250121 1 hónapja
CONTRIBUTING.md e6b2cb2e99 DYZBC_20250121 1 hónapja
CONTRIBUTING_MODELS.md e6b2cb2e99 DYZBC_20250121 1 hónapja
LICENSE e6b2cb2e99 DYZBC_20250121 1 hónapja
MANIFEST.in e6b2cb2e99 DYZBC_20250121 1 hónapja
README.md e6b2cb2e99 DYZBC_20250121 1 hónapja
hubconf.py e6b2cb2e99 DYZBC_20250121 1 hónapja
maintainer_guide.md e6b2cb2e99 DYZBC_20250121 1 hónapja
mypy.ini e6b2cb2e99 DYZBC_20250121 1 hónapja
pyproject.toml e6b2cb2e99 DYZBC_20250121 1 hónapja
pytest.ini e6b2cb2e99 DYZBC_20250121 1 hónapja
setup.cfg e6b2cb2e99 DYZBC_20250121 1 hónapja
setup.py e6b2cb2e99 DYZBC_20250121 1 hónapja
version.txt e6b2cb2e99 DYZBC_20250121 1 hónapja

README.md

torchvision

total torchvision downloads documentation

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

Please refer to the official instructions to install the stable versions of torch and torchvision on your system.

To build source, refer to our contributing page.

The following is the corresponding torchvision versions and supported Python versions.

torch torchvision Python
main / nightly main / nightly >=3.8, <=3.11
2.1 0.16 >=3.8, <=3.11
2.0 0.15 >=3.8, <=3.11
1.13 0.14 >=3.7.2, <=3.10
older versions | `torch` | `torchvision` | Python | |---------|-------------------|---------------------------| | `1.12` | `0.13` | `>=3.7`, `<=3.10` | | `1.11` | `0.12` | `>=3.7`, `<=3.10` | | `1.10` | `0.11` | `>=3.6`, `<=3.9` | | `1.9` | `0.10` | `>=3.6`, `<=3.9` | | `1.8` | `0.9` | `>=3.6`, `<=3.9` | | `1.7` | `0.8` | `>=3.6`, `<=3.9` | | `1.6` | `0.7` | `>=3.6`, `<=3.8` | | `1.5` | `0.6` | `>=3.5`, `<=3.8` | | `1.4` | `0.5` | `==2.7`, `>=3.5`, `<=3.8` | | `1.3` | `0.4.2` / `0.4.3` | `==2.7`, `>=3.5`, `<=3.7` | | `1.2` | `0.4.1` | `==2.7`, `>=3.5`, `<=3.7` | | `1.1` | `0.3` | `==2.7`, `>=3.5`, `<=3.7` | | `<=1.0` | `0.2` | `==2.7`, `>=3.5`, `<=3.7` |

Image Backends

Torchvision currently supports the following image backends:

  • torch tensors
  • PIL images:

Read more in in our docs.

[UNSTABLE] Video Backend

Torchvision currently supports the following video backends:

  • pyav (default) - Pythonic binding for ffmpeg libraries.
  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.

    conda install -c conda-forge ffmpeg
    python setup.py install
    

Using the models on C++

TorchVision provides an example project for how to use the models on C++ using JIT Script.

Installation From source:

mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install

Once installed, the library can be accessed in cmake (after properly configuring CMAKE_PREFIX_PATH) via the TorchVision::TorchVision target:

find_package(TorchVision REQUIRED)
target_link_libraries(my-target PUBLIC TorchVision::TorchVision)

The TorchVision package will also automatically look for the Torch package and add it as a dependency to my-target, so make sure that it is also available to cmake via the CMAKE_PREFIX_PATH.

For an example setup, take a look at examples/cpp/hello_world.

Python linking is disabled by default when compiling TorchVision with CMake, this allows you to run models without any Python dependency. In some special cases where TorchVision's operators are used from Python code, you may need to link to Python. This can be done by passing -DUSE_PYTHON=on to CMake.

TorchVision Operators

In order to get the torchvision operators registered with torch (eg. for the JIT), all you need to do is to ensure that you #include <torchvision/vision.h> in your project.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See SWAG LICENSE for additional details.

Citing TorchVision

If you find TorchVision useful in your work, please consider citing the following BibTeX entry:

@software{torchvision2016,
    title        = {TorchVision: PyTorch's Computer Vision library},
    author       = {TorchVision maintainers and contributors},
    year         = 2016,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/pytorch/vision}}
}