_presets.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. """
  2. This file is part of the private API. Please do not use directly these classes as they will be modified on
  3. future versions without warning. The classes should be accessed only via the transforms argument of Weights.
  4. """
  5. from typing import Optional, Tuple, Union
  6. import torch
  7. from torch import nn, Tensor
  8. from . import functional as F, InterpolationMode
  9. __all__ = [
  10. "ObjectDetection",
  11. "ImageClassification",
  12. "VideoClassification",
  13. "SemanticSegmentation",
  14. "OpticalFlow",
  15. ]
  16. class ObjectDetection(nn.Module):
  17. def forward(self, img: Tensor) -> Tensor:
  18. if not isinstance(img, Tensor):
  19. img = F.pil_to_tensor(img)
  20. return F.convert_image_dtype(img, torch.float)
  21. def __repr__(self) -> str:
  22. return self.__class__.__name__ + "()"
  23. def describe(self) -> str:
  24. return (
  25. "Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. "
  26. "The images are rescaled to ``[0.0, 1.0]``."
  27. )
  28. class ImageClassification(nn.Module):
  29. def __init__(
  30. self,
  31. *,
  32. crop_size: int,
  33. resize_size: int = 256,
  34. mean: Tuple[float, ...] = (0.485, 0.456, 0.406),
  35. std: Tuple[float, ...] = (0.229, 0.224, 0.225),
  36. interpolation: InterpolationMode = InterpolationMode.BILINEAR,
  37. antialias: Optional[Union[str, bool]] = "warn",
  38. ) -> None:
  39. super().__init__()
  40. self.crop_size = [crop_size]
  41. self.resize_size = [resize_size]
  42. self.mean = list(mean)
  43. self.std = list(std)
  44. self.interpolation = interpolation
  45. self.antialias = antialias
  46. def forward(self, img: Tensor) -> Tensor:
  47. img = F.resize(img, self.resize_size, interpolation=self.interpolation, antialias=self.antialias)
  48. img = F.center_crop(img, self.crop_size)
  49. if not isinstance(img, Tensor):
  50. img = F.pil_to_tensor(img)
  51. img = F.convert_image_dtype(img, torch.float)
  52. img = F.normalize(img, mean=self.mean, std=self.std)
  53. return img
  54. def __repr__(self) -> str:
  55. format_string = self.__class__.__name__ + "("
  56. format_string += f"\n crop_size={self.crop_size}"
  57. format_string += f"\n resize_size={self.resize_size}"
  58. format_string += f"\n mean={self.mean}"
  59. format_string += f"\n std={self.std}"
  60. format_string += f"\n interpolation={self.interpolation}"
  61. format_string += "\n)"
  62. return format_string
  63. def describe(self) -> str:
  64. return (
  65. "Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. "
  66. f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``, "
  67. f"followed by a central crop of ``crop_size={self.crop_size}``. Finally the values are first rescaled to "
  68. f"``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and ``std={self.std}``."
  69. )
  70. class VideoClassification(nn.Module):
  71. def __init__(
  72. self,
  73. *,
  74. crop_size: Tuple[int, int],
  75. resize_size: Tuple[int, int],
  76. mean: Tuple[float, ...] = (0.43216, 0.394666, 0.37645),
  77. std: Tuple[float, ...] = (0.22803, 0.22145, 0.216989),
  78. interpolation: InterpolationMode = InterpolationMode.BILINEAR,
  79. ) -> None:
  80. super().__init__()
  81. self.crop_size = list(crop_size)
  82. self.resize_size = list(resize_size)
  83. self.mean = list(mean)
  84. self.std = list(std)
  85. self.interpolation = interpolation
  86. def forward(self, vid: Tensor) -> Tensor:
  87. need_squeeze = False
  88. if vid.ndim < 5:
  89. vid = vid.unsqueeze(dim=0)
  90. need_squeeze = True
  91. N, T, C, H, W = vid.shape
  92. vid = vid.view(-1, C, H, W)
  93. # We hard-code antialias=False to preserve results after we changed
  94. # its default from None to True (see
  95. # https://github.com/pytorch/vision/pull/7160)
  96. # TODO: we could re-train the video models with antialias=True?
  97. vid = F.resize(vid, self.resize_size, interpolation=self.interpolation, antialias=False)
  98. vid = F.center_crop(vid, self.crop_size)
  99. vid = F.convert_image_dtype(vid, torch.float)
  100. vid = F.normalize(vid, mean=self.mean, std=self.std)
  101. H, W = self.crop_size
  102. vid = vid.view(N, T, C, H, W)
  103. vid = vid.permute(0, 2, 1, 3, 4) # (N, T, C, H, W) => (N, C, T, H, W)
  104. if need_squeeze:
  105. vid = vid.squeeze(dim=0)
  106. return vid
  107. def __repr__(self) -> str:
  108. format_string = self.__class__.__name__ + "("
  109. format_string += f"\n crop_size={self.crop_size}"
  110. format_string += f"\n resize_size={self.resize_size}"
  111. format_string += f"\n mean={self.mean}"
  112. format_string += f"\n std={self.std}"
  113. format_string += f"\n interpolation={self.interpolation}"
  114. format_string += "\n)"
  115. return format_string
  116. def describe(self) -> str:
  117. return (
  118. "Accepts batched ``(B, T, C, H, W)`` and single ``(T, C, H, W)`` video frame ``torch.Tensor`` objects. "
  119. f"The frames are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``, "
  120. f"followed by a central crop of ``crop_size={self.crop_size}``. Finally the values are first rescaled to "
  121. f"``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and ``std={self.std}``. Finally the output "
  122. "dimensions are permuted to ``(..., C, T, H, W)`` tensors."
  123. )
  124. class SemanticSegmentation(nn.Module):
  125. def __init__(
  126. self,
  127. *,
  128. resize_size: Optional[int],
  129. mean: Tuple[float, ...] = (0.485, 0.456, 0.406),
  130. std: Tuple[float, ...] = (0.229, 0.224, 0.225),
  131. interpolation: InterpolationMode = InterpolationMode.BILINEAR,
  132. antialias: Optional[Union[str, bool]] = "warn",
  133. ) -> None:
  134. super().__init__()
  135. self.resize_size = [resize_size] if resize_size is not None else None
  136. self.mean = list(mean)
  137. self.std = list(std)
  138. self.interpolation = interpolation
  139. self.antialias = antialias
  140. def forward(self, img: Tensor) -> Tensor:
  141. if isinstance(self.resize_size, list):
  142. img = F.resize(img, self.resize_size, interpolation=self.interpolation, antialias=self.antialias)
  143. if not isinstance(img, Tensor):
  144. img = F.pil_to_tensor(img)
  145. img = F.convert_image_dtype(img, torch.float)
  146. img = F.normalize(img, mean=self.mean, std=self.std)
  147. return img
  148. def __repr__(self) -> str:
  149. format_string = self.__class__.__name__ + "("
  150. format_string += f"\n resize_size={self.resize_size}"
  151. format_string += f"\n mean={self.mean}"
  152. format_string += f"\n std={self.std}"
  153. format_string += f"\n interpolation={self.interpolation}"
  154. format_string += "\n)"
  155. return format_string
  156. def describe(self) -> str:
  157. return (
  158. "Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. "
  159. f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``. "
  160. f"Finally the values are first rescaled to ``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and "
  161. f"``std={self.std}``."
  162. )
  163. class OpticalFlow(nn.Module):
  164. def forward(self, img1: Tensor, img2: Tensor) -> Tuple[Tensor, Tensor]:
  165. if not isinstance(img1, Tensor):
  166. img1 = F.pil_to_tensor(img1)
  167. if not isinstance(img2, Tensor):
  168. img2 = F.pil_to_tensor(img2)
  169. img1 = F.convert_image_dtype(img1, torch.float)
  170. img2 = F.convert_image_dtype(img2, torch.float)
  171. # map [0, 1] into [-1, 1]
  172. img1 = F.normalize(img1, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
  173. img2 = F.normalize(img2, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
  174. img1 = img1.contiguous()
  175. img2 = img2.contiguous()
  176. return img1, img2
  177. def __repr__(self) -> str:
  178. return self.__class__.__name__ + "()"
  179. def describe(self) -> str:
  180. return (
  181. "Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. "
  182. "The images are rescaled to ``[-1.0, 1.0]``."
  183. )