123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- import torch
- import torch.fx
- from torch import nn, Tensor
- from ..utils import _log_api_usage_once
- def stochastic_depth(input: Tensor, p: float, mode: str, training: bool = True) -> Tensor:
- """
- Implements the Stochastic Depth from `"Deep Networks with Stochastic Depth"
- <https://arxiv.org/abs/1603.09382>`_ used for randomly dropping residual
- branches of residual architectures.
- Args:
- input (Tensor[N, ...]): The input tensor or arbitrary dimensions with the first one
- being its batch i.e. a batch with ``N`` rows.
- p (float): probability of the input to be zeroed.
- mode (str): ``"batch"`` or ``"row"``.
- ``"batch"`` randomly zeroes the entire input, ``"row"`` zeroes
- randomly selected rows from the batch.
- training: apply stochastic depth if is ``True``. Default: ``True``
- Returns:
- Tensor[N, ...]: The randomly zeroed tensor.
- """
- if not torch.jit.is_scripting() and not torch.jit.is_tracing():
- _log_api_usage_once(stochastic_depth)
- if p < 0.0 or p > 1.0:
- raise ValueError(f"drop probability has to be between 0 and 1, but got {p}")
- if mode not in ["batch", "row"]:
- raise ValueError(f"mode has to be either 'batch' or 'row', but got {mode}")
- if not training or p == 0.0:
- return input
- survival_rate = 1.0 - p
- if mode == "row":
- size = [input.shape[0]] + [1] * (input.ndim - 1)
- else:
- size = [1] * input.ndim
- noise = torch.empty(size, dtype=input.dtype, device=input.device)
- noise = noise.bernoulli_(survival_rate)
- if survival_rate > 0.0:
- noise.div_(survival_rate)
- return input * noise
- torch.fx.wrap("stochastic_depth")
- class StochasticDepth(nn.Module):
- """
- See :func:`stochastic_depth`.
- """
- def __init__(self, p: float, mode: str) -> None:
- super().__init__()
- _log_api_usage_once(self)
- self.p = p
- self.mode = mode
- def forward(self, input: Tensor) -> Tensor:
- return stochastic_depth(input, self.p, self.mode, self.training)
- def __repr__(self) -> str:
- s = f"{self.__class__.__name__}(p={self.p}, mode={self.mode})"
- return s
|