123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- import torch
- import torch.fx
- import torch.nn.functional as F
- from torch import nn, Tensor
- from ..utils import _log_api_usage_once
- def drop_block2d(
- input: Tensor, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06, training: bool = True
- ) -> Tensor:
- """
- Implements DropBlock2d from `"DropBlock: A regularization method for convolutional networks"
- <https://arxiv.org/abs/1810.12890>`.
- Args:
- input (Tensor[N, C, H, W]): The input tensor or 4-dimensions with the first one
- being its batch i.e. a batch with ``N`` rows.
- p (float): Probability of an element to be dropped.
- block_size (int): Size of the block to drop.
- inplace (bool): If set to ``True``, will do this operation in-place. Default: ``False``.
- eps (float): A value added to the denominator for numerical stability. Default: 1e-6.
- training (bool): apply dropblock if is ``True``. Default: ``True``.
- Returns:
- Tensor[N, C, H, W]: The randomly zeroed tensor after dropblock.
- """
- if not torch.jit.is_scripting() and not torch.jit.is_tracing():
- _log_api_usage_once(drop_block2d)
- if p < 0.0 or p > 1.0:
- raise ValueError(f"drop probability has to be between 0 and 1, but got {p}.")
- if input.ndim != 4:
- raise ValueError(f"input should be 4 dimensional. Got {input.ndim} dimensions.")
- if not training or p == 0.0:
- return input
- N, C, H, W = input.size()
- block_size = min(block_size, W, H)
- # compute the gamma of Bernoulli distribution
- gamma = (p * H * W) / ((block_size**2) * ((H - block_size + 1) * (W - block_size + 1)))
- noise = torch.empty((N, C, H - block_size + 1, W - block_size + 1), dtype=input.dtype, device=input.device)
- noise.bernoulli_(gamma)
- noise = F.pad(noise, [block_size // 2] * 4, value=0)
- noise = F.max_pool2d(noise, stride=(1, 1), kernel_size=(block_size, block_size), padding=block_size // 2)
- noise = 1 - noise
- normalize_scale = noise.numel() / (eps + noise.sum())
- if inplace:
- input.mul_(noise).mul_(normalize_scale)
- else:
- input = input * noise * normalize_scale
- return input
- def drop_block3d(
- input: Tensor, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06, training: bool = True
- ) -> Tensor:
- """
- Implements DropBlock3d from `"DropBlock: A regularization method for convolutional networks"
- <https://arxiv.org/abs/1810.12890>`.
- Args:
- input (Tensor[N, C, D, H, W]): The input tensor or 5-dimensions with the first one
- being its batch i.e. a batch with ``N`` rows.
- p (float): Probability of an element to be dropped.
- block_size (int): Size of the block to drop.
- inplace (bool): If set to ``True``, will do this operation in-place. Default: ``False``.
- eps (float): A value added to the denominator for numerical stability. Default: 1e-6.
- training (bool): apply dropblock if is ``True``. Default: ``True``.
- Returns:
- Tensor[N, C, D, H, W]: The randomly zeroed tensor after dropblock.
- """
- if not torch.jit.is_scripting() and not torch.jit.is_tracing():
- _log_api_usage_once(drop_block3d)
- if p < 0.0 or p > 1.0:
- raise ValueError(f"drop probability has to be between 0 and 1, but got {p}.")
- if input.ndim != 5:
- raise ValueError(f"input should be 5 dimensional. Got {input.ndim} dimensions.")
- if not training or p == 0.0:
- return input
- N, C, D, H, W = input.size()
- block_size = min(block_size, D, H, W)
- # compute the gamma of Bernoulli distribution
- gamma = (p * D * H * W) / ((block_size**3) * ((D - block_size + 1) * (H - block_size + 1) * (W - block_size + 1)))
- noise = torch.empty(
- (N, C, D - block_size + 1, H - block_size + 1, W - block_size + 1), dtype=input.dtype, device=input.device
- )
- noise.bernoulli_(gamma)
- noise = F.pad(noise, [block_size // 2] * 6, value=0)
- noise = F.max_pool3d(
- noise, stride=(1, 1, 1), kernel_size=(block_size, block_size, block_size), padding=block_size // 2
- )
- noise = 1 - noise
- normalize_scale = noise.numel() / (eps + noise.sum())
- if inplace:
- input.mul_(noise).mul_(normalize_scale)
- else:
- input = input * noise * normalize_scale
- return input
- torch.fx.wrap("drop_block2d")
- class DropBlock2d(nn.Module):
- """
- See :func:`drop_block2d`.
- """
- def __init__(self, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06) -> None:
- super().__init__()
- self.p = p
- self.block_size = block_size
- self.inplace = inplace
- self.eps = eps
- def forward(self, input: Tensor) -> Tensor:
- """
- Args:
- input (Tensor): Input feature map on which some areas will be randomly
- dropped.
- Returns:
- Tensor: The tensor after DropBlock layer.
- """
- return drop_block2d(input, self.p, self.block_size, self.inplace, self.eps, self.training)
- def __repr__(self) -> str:
- s = f"{self.__class__.__name__}(p={self.p}, block_size={self.block_size}, inplace={self.inplace})"
- return s
- torch.fx.wrap("drop_block3d")
- class DropBlock3d(DropBlock2d):
- """
- See :func:`drop_block3d`.
- """
- def __init__(self, p: float, block_size: int, inplace: bool = False, eps: float = 1e-06) -> None:
- super().__init__(p, block_size, inplace, eps)
- def forward(self, input: Tensor) -> Tensor:
- """
- Args:
- input (Tensor): Input feature map on which some areas will be randomly
- dropped.
- Returns:
- Tensor: The tensor after DropBlock layer.
- """
- return drop_block3d(input, self.p, self.block_size, self.inplace, self.eps, self.training)
|