123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743 |
- # Modified from 2d Swin Transformers in torchvision:
- # https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py
- from functools import partial
- from typing import Any, Callable, List, Optional, Tuple
- import torch
- import torch.nn.functional as F
- from torch import nn, Tensor
- from ...transforms._presets import VideoClassification
- from ...utils import _log_api_usage_once
- from .._api import register_model, Weights, WeightsEnum
- from .._meta import _KINETICS400_CATEGORIES
- from .._utils import _ovewrite_named_param, handle_legacy_interface
- from ..swin_transformer import PatchMerging, SwinTransformerBlock
- __all__ = [
- "SwinTransformer3d",
- "Swin3D_T_Weights",
- "Swin3D_S_Weights",
- "Swin3D_B_Weights",
- "swin3d_t",
- "swin3d_s",
- "swin3d_b",
- ]
- def _get_window_and_shift_size(
- shift_size: List[int], size_dhw: List[int], window_size: List[int]
- ) -> Tuple[List[int], List[int]]:
- for i in range(3):
- if size_dhw[i] <= window_size[i]:
- # In this case, window_size will adapt to the input size, and no need to shift
- window_size[i] = size_dhw[i]
- shift_size[i] = 0
- return window_size, shift_size
- torch.fx.wrap("_get_window_and_shift_size")
- def _get_relative_position_bias(
- relative_position_bias_table: torch.Tensor, relative_position_index: torch.Tensor, window_size: List[int]
- ) -> Tensor:
- window_vol = window_size[0] * window_size[1] * window_size[2]
- # In 3d case we flatten the relative_position_bias
- relative_position_bias = relative_position_bias_table[
- relative_position_index[:window_vol, :window_vol].flatten() # type: ignore[index]
- ]
- relative_position_bias = relative_position_bias.view(window_vol, window_vol, -1)
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous().unsqueeze(0)
- return relative_position_bias
- torch.fx.wrap("_get_relative_position_bias")
- def _compute_pad_size_3d(size_dhw: Tuple[int, int, int], patch_size: Tuple[int, int, int]) -> Tuple[int, int, int]:
- pad_size = [(patch_size[i] - size_dhw[i] % patch_size[i]) % patch_size[i] for i in range(3)]
- return pad_size[0], pad_size[1], pad_size[2]
- torch.fx.wrap("_compute_pad_size_3d")
- def _compute_attention_mask_3d(
- x: Tensor,
- size_dhw: Tuple[int, int, int],
- window_size: Tuple[int, int, int],
- shift_size: Tuple[int, int, int],
- ) -> Tensor:
- # generate attention mask
- attn_mask = x.new_zeros(*size_dhw)
- num_windows = (size_dhw[0] // window_size[0]) * (size_dhw[1] // window_size[1]) * (size_dhw[2] // window_size[2])
- slices = [
- (
- (0, -window_size[i]),
- (-window_size[i], -shift_size[i]),
- (-shift_size[i], None),
- )
- for i in range(3)
- ]
- count = 0
- for d in slices[0]:
- for h in slices[1]:
- for w in slices[2]:
- attn_mask[d[0] : d[1], h[0] : h[1], w[0] : w[1]] = count
- count += 1
- # Partition window on attn_mask
- attn_mask = attn_mask.view(
- size_dhw[0] // window_size[0],
- window_size[0],
- size_dhw[1] // window_size[1],
- window_size[1],
- size_dhw[2] // window_size[2],
- window_size[2],
- )
- attn_mask = attn_mask.permute(0, 2, 4, 1, 3, 5).reshape(
- num_windows, window_size[0] * window_size[1] * window_size[2]
- )
- attn_mask = attn_mask.unsqueeze(1) - attn_mask.unsqueeze(2)
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
- return attn_mask
- torch.fx.wrap("_compute_attention_mask_3d")
- def shifted_window_attention_3d(
- input: Tensor,
- qkv_weight: Tensor,
- proj_weight: Tensor,
- relative_position_bias: Tensor,
- window_size: List[int],
- num_heads: int,
- shift_size: List[int],
- attention_dropout: float = 0.0,
- dropout: float = 0.0,
- qkv_bias: Optional[Tensor] = None,
- proj_bias: Optional[Tensor] = None,
- training: bool = True,
- ) -> Tensor:
- """
- Window based multi-head self attention (W-MSA) module with relative position bias.
- It supports both of shifted and non-shifted window.
- Args:
- input (Tensor[B, T, H, W, C]): The input tensor, 5-dimensions.
- qkv_weight (Tensor[in_dim, out_dim]): The weight tensor of query, key, value.
- proj_weight (Tensor[out_dim, out_dim]): The weight tensor of projection.
- relative_position_bias (Tensor): The learned relative position bias added to attention.
- window_size (List[int]): 3-dimensions window size, T, H, W .
- num_heads (int): Number of attention heads.
- shift_size (List[int]): Shift size for shifted window attention (T, H, W).
- attention_dropout (float): Dropout ratio of attention weight. Default: 0.0.
- dropout (float): Dropout ratio of output. Default: 0.0.
- qkv_bias (Tensor[out_dim], optional): The bias tensor of query, key, value. Default: None.
- proj_bias (Tensor[out_dim], optional): The bias tensor of projection. Default: None.
- training (bool, optional): Training flag used by the dropout parameters. Default: True.
- Returns:
- Tensor[B, T, H, W, C]: The output tensor after shifted window attention.
- """
- b, t, h, w, c = input.shape
- # pad feature maps to multiples of window size
- pad_size = _compute_pad_size_3d((t, h, w), (window_size[0], window_size[1], window_size[2]))
- x = F.pad(input, (0, 0, 0, pad_size[2], 0, pad_size[1], 0, pad_size[0]))
- _, tp, hp, wp, _ = x.shape
- padded_size = (tp, hp, wp)
- # cyclic shift
- if sum(shift_size) > 0:
- x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3))
- # partition windows
- num_windows = (
- (padded_size[0] // window_size[0]) * (padded_size[1] // window_size[1]) * (padded_size[2] // window_size[2])
- )
- x = x.view(
- b,
- padded_size[0] // window_size[0],
- window_size[0],
- padded_size[1] // window_size[1],
- window_size[1],
- padded_size[2] // window_size[2],
- window_size[2],
- c,
- )
- x = x.permute(0, 1, 3, 5, 2, 4, 6, 7).reshape(
- b * num_windows, window_size[0] * window_size[1] * window_size[2], c
- ) # B*nW, Wd*Wh*Ww, C
- # multi-head attention
- qkv = F.linear(x, qkv_weight, qkv_bias)
- qkv = qkv.reshape(x.size(0), x.size(1), 3, num_heads, c // num_heads).permute(2, 0, 3, 1, 4)
- q, k, v = qkv[0], qkv[1], qkv[2]
- q = q * (c // num_heads) ** -0.5
- attn = q.matmul(k.transpose(-2, -1))
- # add relative position bias
- attn = attn + relative_position_bias
- if sum(shift_size) > 0:
- # generate attention mask to handle shifted windows with varying size
- attn_mask = _compute_attention_mask_3d(
- x,
- (padded_size[0], padded_size[1], padded_size[2]),
- (window_size[0], window_size[1], window_size[2]),
- (shift_size[0], shift_size[1], shift_size[2]),
- )
- attn = attn.view(x.size(0) // num_windows, num_windows, num_heads, x.size(1), x.size(1))
- attn = attn + attn_mask.unsqueeze(1).unsqueeze(0)
- attn = attn.view(-1, num_heads, x.size(1), x.size(1))
- attn = F.softmax(attn, dim=-1)
- attn = F.dropout(attn, p=attention_dropout, training=training)
- x = attn.matmul(v).transpose(1, 2).reshape(x.size(0), x.size(1), c)
- x = F.linear(x, proj_weight, proj_bias)
- x = F.dropout(x, p=dropout, training=training)
- # reverse windows
- x = x.view(
- b,
- padded_size[0] // window_size[0],
- padded_size[1] // window_size[1],
- padded_size[2] // window_size[2],
- window_size[0],
- window_size[1],
- window_size[2],
- c,
- )
- x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).reshape(b, tp, hp, wp, c)
- # reverse cyclic shift
- if sum(shift_size) > 0:
- x = torch.roll(x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3))
- # unpad features
- x = x[:, :t, :h, :w, :].contiguous()
- return x
- torch.fx.wrap("shifted_window_attention_3d")
- class ShiftedWindowAttention3d(nn.Module):
- """
- See :func:`shifted_window_attention_3d`.
- """
- def __init__(
- self,
- dim: int,
- window_size: List[int],
- shift_size: List[int],
- num_heads: int,
- qkv_bias: bool = True,
- proj_bias: bool = True,
- attention_dropout: float = 0.0,
- dropout: float = 0.0,
- ) -> None:
- super().__init__()
- if len(window_size) != 3 or len(shift_size) != 3:
- raise ValueError("window_size and shift_size must be of length 2")
- self.window_size = window_size # Wd, Wh, Ww
- self.shift_size = shift_size
- self.num_heads = num_heads
- self.attention_dropout = attention_dropout
- self.dropout = dropout
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.proj = nn.Linear(dim, dim, bias=proj_bias)
- self.define_relative_position_bias_table()
- self.define_relative_position_index()
- def define_relative_position_bias_table(self) -> None:
- # define a parameter table of relative position bias
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros(
- (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1),
- self.num_heads,
- )
- ) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH
- nn.init.trunc_normal_(self.relative_position_bias_table, std=0.02)
- def define_relative_position_index(self) -> None:
- # get pair-wise relative position index for each token inside the window
- coords_dhw = [torch.arange(self.window_size[i]) for i in range(3)]
- coords = torch.stack(
- torch.meshgrid(coords_dhw[0], coords_dhw[1], coords_dhw[2], indexing="ij")
- ) # 3, Wd, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 3, Wd*Wh*Ww, Wd*Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += self.window_size[1] - 1
- relative_coords[:, :, 2] += self.window_size[2] - 1
- relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
- relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1
- # We don't flatten the relative_position_index here in 3d case.
- relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww
- self.register_buffer("relative_position_index", relative_position_index)
- def get_relative_position_bias(self, window_size: List[int]) -> torch.Tensor:
- return _get_relative_position_bias(self.relative_position_bias_table, self.relative_position_index, window_size) # type: ignore
- def forward(self, x: Tensor) -> Tensor:
- _, t, h, w, _ = x.shape
- size_dhw = [t, h, w]
- window_size, shift_size = self.window_size.copy(), self.shift_size.copy()
- # Handle case where window_size is larger than the input tensor
- window_size, shift_size = _get_window_and_shift_size(shift_size, size_dhw, window_size)
- relative_position_bias = self.get_relative_position_bias(window_size)
- return shifted_window_attention_3d(
- x,
- self.qkv.weight,
- self.proj.weight,
- relative_position_bias,
- window_size,
- self.num_heads,
- shift_size=shift_size,
- attention_dropout=self.attention_dropout,
- dropout=self.dropout,
- qkv_bias=self.qkv.bias,
- proj_bias=self.proj.bias,
- training=self.training,
- )
- # Modified from:
- # https://github.com/SwinTransformer/Video-Swin-Transformer/blob/master/mmaction/models/backbones/swin_transformer.py
- class PatchEmbed3d(nn.Module):
- """Video to Patch Embedding.
- Args:
- patch_size (List[int]): Patch token size.
- in_channels (int): Number of input channels. Default: 3
- embed_dim (int): Number of linear projection output channels. Default: 96.
- norm_layer (nn.Module, optional): Normalization layer. Default: None
- """
- def __init__(
- self,
- patch_size: List[int],
- in_channels: int = 3,
- embed_dim: int = 96,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- ) -> None:
- super().__init__()
- _log_api_usage_once(self)
- self.tuple_patch_size = (patch_size[0], patch_size[1], patch_size[2])
- self.proj = nn.Conv3d(
- in_channels,
- embed_dim,
- kernel_size=self.tuple_patch_size,
- stride=self.tuple_patch_size,
- )
- if norm_layer is not None:
- self.norm = norm_layer(embed_dim)
- else:
- self.norm = nn.Identity()
- def forward(self, x: Tensor) -> Tensor:
- """Forward function."""
- # padding
- _, _, t, h, w = x.size()
- pad_size = _compute_pad_size_3d((t, h, w), self.tuple_patch_size)
- x = F.pad(x, (0, pad_size[2], 0, pad_size[1], 0, pad_size[0]))
- x = self.proj(x) # B C T Wh Ww
- x = x.permute(0, 2, 3, 4, 1) # B T Wh Ww C
- if self.norm is not None:
- x = self.norm(x)
- return x
- class SwinTransformer3d(nn.Module):
- """
- Implements 3D Swin Transformer from the `"Video Swin Transformer" <https://arxiv.org/abs/2106.13230>`_ paper.
- Args:
- patch_size (List[int]): Patch size.
- embed_dim (int): Patch embedding dimension.
- depths (List(int)): Depth of each Swin Transformer layer.
- num_heads (List(int)): Number of attention heads in different layers.
- window_size (List[int]): Window size.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
- dropout (float): Dropout rate. Default: 0.0.
- attention_dropout (float): Attention dropout rate. Default: 0.0.
- stochastic_depth_prob (float): Stochastic depth rate. Default: 0.1.
- num_classes (int): Number of classes for classification head. Default: 400.
- norm_layer (nn.Module, optional): Normalization layer. Default: None.
- block (nn.Module, optional): SwinTransformer Block. Default: None.
- downsample_layer (nn.Module): Downsample layer (patch merging). Default: PatchMerging.
- patch_embed (nn.Module, optional): Patch Embedding layer. Default: None.
- """
- def __init__(
- self,
- patch_size: List[int],
- embed_dim: int,
- depths: List[int],
- num_heads: List[int],
- window_size: List[int],
- mlp_ratio: float = 4.0,
- dropout: float = 0.0,
- attention_dropout: float = 0.0,
- stochastic_depth_prob: float = 0.1,
- num_classes: int = 400,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- block: Optional[Callable[..., nn.Module]] = None,
- downsample_layer: Callable[..., nn.Module] = PatchMerging,
- patch_embed: Optional[Callable[..., nn.Module]] = None,
- ) -> None:
- super().__init__()
- _log_api_usage_once(self)
- self.num_classes = num_classes
- if block is None:
- block = partial(SwinTransformerBlock, attn_layer=ShiftedWindowAttention3d)
- if norm_layer is None:
- norm_layer = partial(nn.LayerNorm, eps=1e-5)
- if patch_embed is None:
- patch_embed = PatchEmbed3d
- # split image into non-overlapping patches
- self.patch_embed = patch_embed(patch_size=patch_size, embed_dim=embed_dim, norm_layer=norm_layer)
- self.pos_drop = nn.Dropout(p=dropout)
- layers: List[nn.Module] = []
- total_stage_blocks = sum(depths)
- stage_block_id = 0
- # build SwinTransformer blocks
- for i_stage in range(len(depths)):
- stage: List[nn.Module] = []
- dim = embed_dim * 2**i_stage
- for i_layer in range(depths[i_stage]):
- # adjust stochastic depth probability based on the depth of the stage block
- sd_prob = stochastic_depth_prob * float(stage_block_id) / (total_stage_blocks - 1)
- stage.append(
- block(
- dim,
- num_heads[i_stage],
- window_size=window_size,
- shift_size=[0 if i_layer % 2 == 0 else w // 2 for w in window_size],
- mlp_ratio=mlp_ratio,
- dropout=dropout,
- attention_dropout=attention_dropout,
- stochastic_depth_prob=sd_prob,
- norm_layer=norm_layer,
- attn_layer=ShiftedWindowAttention3d,
- )
- )
- stage_block_id += 1
- layers.append(nn.Sequential(*stage))
- # add patch merging layer
- if i_stage < (len(depths) - 1):
- layers.append(downsample_layer(dim, norm_layer))
- self.features = nn.Sequential(*layers)
- self.num_features = embed_dim * 2 ** (len(depths) - 1)
- self.norm = norm_layer(self.num_features)
- self.avgpool = nn.AdaptiveAvgPool3d(1)
- self.head = nn.Linear(self.num_features, num_classes)
- for m in self.modules():
- if isinstance(m, nn.Linear):
- nn.init.trunc_normal_(m.weight, std=0.02)
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- def forward(self, x: Tensor) -> Tensor:
- # x: B C T H W
- x = self.patch_embed(x) # B _T _H _W C
- x = self.pos_drop(x)
- x = self.features(x) # B _T _H _W C
- x = self.norm(x)
- x = x.permute(0, 4, 1, 2, 3) # B, C, _T, _H, _W
- x = self.avgpool(x)
- x = torch.flatten(x, 1)
- x = self.head(x)
- return x
- def _swin_transformer3d(
- patch_size: List[int],
- embed_dim: int,
- depths: List[int],
- num_heads: List[int],
- window_size: List[int],
- stochastic_depth_prob: float,
- weights: Optional[WeightsEnum],
- progress: bool,
- **kwargs: Any,
- ) -> SwinTransformer3d:
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = SwinTransformer3d(
- patch_size=patch_size,
- embed_dim=embed_dim,
- depths=depths,
- num_heads=num_heads,
- window_size=window_size,
- stochastic_depth_prob=stochastic_depth_prob,
- **kwargs,
- )
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
- _COMMON_META = {
- "categories": _KINETICS400_CATEGORIES,
- "min_size": (1, 1),
- "min_temporal_size": 1,
- }
- class Swin3D_T_Weights(WeightsEnum):
- KINETICS400_V1 = Weights(
- url="https://download.pytorch.org/models/swin3d_t-7615ae03.pth",
- transforms=partial(
- VideoClassification,
- crop_size=(224, 224),
- resize_size=(256,),
- mean=(0.4850, 0.4560, 0.4060),
- std=(0.2290, 0.2240, 0.2250),
- ),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400",
- "_docs": (
- "The weights were ported from the paper. The accuracies are estimated on video-level "
- "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`"
- ),
- "num_params": 28158070,
- "_metrics": {
- "Kinetics-400": {
- "acc@1": 77.715,
- "acc@5": 93.519,
- }
- },
- "_ops": 43.882,
- "_file_size": 121.543,
- },
- )
- DEFAULT = KINETICS400_V1
- class Swin3D_S_Weights(WeightsEnum):
- KINETICS400_V1 = Weights(
- url="https://download.pytorch.org/models/swin3d_s-da41c237.pth",
- transforms=partial(
- VideoClassification,
- crop_size=(224, 224),
- resize_size=(256,),
- mean=(0.4850, 0.4560, 0.4060),
- std=(0.2290, 0.2240, 0.2250),
- ),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400",
- "_docs": (
- "The weights were ported from the paper. The accuracies are estimated on video-level "
- "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`"
- ),
- "num_params": 49816678,
- "_metrics": {
- "Kinetics-400": {
- "acc@1": 79.521,
- "acc@5": 94.158,
- }
- },
- "_ops": 82.841,
- "_file_size": 218.288,
- },
- )
- DEFAULT = KINETICS400_V1
- class Swin3D_B_Weights(WeightsEnum):
- KINETICS400_V1 = Weights(
- url="https://download.pytorch.org/models/swin3d_b_1k-24f7c7c6.pth",
- transforms=partial(
- VideoClassification,
- crop_size=(224, 224),
- resize_size=(256,),
- mean=(0.4850, 0.4560, 0.4060),
- std=(0.2290, 0.2240, 0.2250),
- ),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400",
- "_docs": (
- "The weights were ported from the paper. The accuracies are estimated on video-level "
- "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`"
- ),
- "num_params": 88048984,
- "_metrics": {
- "Kinetics-400": {
- "acc@1": 79.427,
- "acc@5": 94.386,
- }
- },
- "_ops": 140.667,
- "_file_size": 364.134,
- },
- )
- KINETICS400_IMAGENET22K_V1 = Weights(
- url="https://download.pytorch.org/models/swin3d_b_22k-7c6ae6fa.pth",
- transforms=partial(
- VideoClassification,
- crop_size=(224, 224),
- resize_size=(256,),
- mean=(0.4850, 0.4560, 0.4060),
- std=(0.2290, 0.2240, 0.2250),
- ),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/SwinTransformer/Video-Swin-Transformer#kinetics-400",
- "_docs": (
- "The weights were ported from the paper. The accuracies are estimated on video-level "
- "with parameters `frame_rate=15`, `clips_per_video=12`, and `clip_len=32`"
- ),
- "num_params": 88048984,
- "_metrics": {
- "Kinetics-400": {
- "acc@1": 81.643,
- "acc@5": 95.574,
- }
- },
- "_ops": 140.667,
- "_file_size": 364.134,
- },
- )
- DEFAULT = KINETICS400_V1
- @register_model()
- @handle_legacy_interface(weights=("pretrained", Swin3D_T_Weights.KINETICS400_V1))
- def swin3d_t(*, weights: Optional[Swin3D_T_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer3d:
- """
- Constructs a swin_tiny architecture from
- `Video Swin Transformer <https://arxiv.org/abs/2106.13230>`_.
- Args:
- weights (:class:`~torchvision.models.video.Swin3D_T_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.video.Swin3D_T_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.video.swin_transformer.SwinTransformer``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/video/swin_transformer.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.video.Swin3D_T_Weights
- :members:
- """
- weights = Swin3D_T_Weights.verify(weights)
- return _swin_transformer3d(
- patch_size=[2, 4, 4],
- embed_dim=96,
- depths=[2, 2, 6, 2],
- num_heads=[3, 6, 12, 24],
- window_size=[8, 7, 7],
- stochastic_depth_prob=0.1,
- weights=weights,
- progress=progress,
- **kwargs,
- )
- @register_model()
- @handle_legacy_interface(weights=("pretrained", Swin3D_S_Weights.KINETICS400_V1))
- def swin3d_s(*, weights: Optional[Swin3D_S_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer3d:
- """
- Constructs a swin_small architecture from
- `Video Swin Transformer <https://arxiv.org/abs/2106.13230>`_.
- Args:
- weights (:class:`~torchvision.models.video.Swin3D_S_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.video.Swin3D_S_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.video.swin_transformer.SwinTransformer``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/video/swin_transformer.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.video.Swin3D_S_Weights
- :members:
- """
- weights = Swin3D_S_Weights.verify(weights)
- return _swin_transformer3d(
- patch_size=[2, 4, 4],
- embed_dim=96,
- depths=[2, 2, 18, 2],
- num_heads=[3, 6, 12, 24],
- window_size=[8, 7, 7],
- stochastic_depth_prob=0.1,
- weights=weights,
- progress=progress,
- **kwargs,
- )
- @register_model()
- @handle_legacy_interface(weights=("pretrained", Swin3D_B_Weights.KINETICS400_V1))
- def swin3d_b(*, weights: Optional[Swin3D_B_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer3d:
- """
- Constructs a swin_base architecture from
- `Video Swin Transformer <https://arxiv.org/abs/2106.13230>`_.
- Args:
- weights (:class:`~torchvision.models.video.Swin3D_B_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.video.Swin3D_B_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.video.swin_transformer.SwinTransformer``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/video/swin_transformer.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.video.Swin3D_B_Weights
- :members:
- """
- weights = Swin3D_B_Weights.verify(weights)
- return _swin_transformer3d(
- patch_size=[2, 4, 4],
- embed_dim=128,
- depths=[2, 2, 18, 2],
- num_heads=[4, 8, 16, 32],
- window_size=[8, 7, 7],
- stochastic_depth_prob=0.1,
- weights=weights,
- progress=progress,
- **kwargs,
- )
|