123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- from functools import partial
- from typing import Any, Callable, Optional
- import torch
- from torch import nn
- from torchvision.ops.misc import Conv3dNormActivation
- from ...transforms._presets import VideoClassification
- from ...utils import _log_api_usage_once
- from .._api import register_model, Weights, WeightsEnum
- from .._meta import _KINETICS400_CATEGORIES
- from .._utils import _ovewrite_named_param, handle_legacy_interface
- __all__ = [
- "S3D",
- "S3D_Weights",
- "s3d",
- ]
- class TemporalSeparableConv(nn.Sequential):
- def __init__(
- self,
- in_planes: int,
- out_planes: int,
- kernel_size: int,
- stride: int,
- padding: int,
- norm_layer: Callable[..., nn.Module],
- ):
- super().__init__(
- Conv3dNormActivation(
- in_planes,
- out_planes,
- kernel_size=(1, kernel_size, kernel_size),
- stride=(1, stride, stride),
- padding=(0, padding, padding),
- bias=False,
- norm_layer=norm_layer,
- ),
- Conv3dNormActivation(
- out_planes,
- out_planes,
- kernel_size=(kernel_size, 1, 1),
- stride=(stride, 1, 1),
- padding=(padding, 0, 0),
- bias=False,
- norm_layer=norm_layer,
- ),
- )
- class SepInceptionBlock3D(nn.Module):
- def __init__(
- self,
- in_planes: int,
- b0_out: int,
- b1_mid: int,
- b1_out: int,
- b2_mid: int,
- b2_out: int,
- b3_out: int,
- norm_layer: Callable[..., nn.Module],
- ):
- super().__init__()
- self.branch0 = Conv3dNormActivation(in_planes, b0_out, kernel_size=1, stride=1, norm_layer=norm_layer)
- self.branch1 = nn.Sequential(
- Conv3dNormActivation(in_planes, b1_mid, kernel_size=1, stride=1, norm_layer=norm_layer),
- TemporalSeparableConv(b1_mid, b1_out, kernel_size=3, stride=1, padding=1, norm_layer=norm_layer),
- )
- self.branch2 = nn.Sequential(
- Conv3dNormActivation(in_planes, b2_mid, kernel_size=1, stride=1, norm_layer=norm_layer),
- TemporalSeparableConv(b2_mid, b2_out, kernel_size=3, stride=1, padding=1, norm_layer=norm_layer),
- )
- self.branch3 = nn.Sequential(
- nn.MaxPool3d(kernel_size=(3, 3, 3), stride=1, padding=1),
- Conv3dNormActivation(in_planes, b3_out, kernel_size=1, stride=1, norm_layer=norm_layer),
- )
- def forward(self, x):
- x0 = self.branch0(x)
- x1 = self.branch1(x)
- x2 = self.branch2(x)
- x3 = self.branch3(x)
- out = torch.cat((x0, x1, x2, x3), 1)
- return out
- class S3D(nn.Module):
- """S3D main class.
- Args:
- num_class (int): number of classes for the classification task.
- dropout (float): dropout probability.
- norm_layer (Optional[Callable]): Module specifying the normalization layer to use.
- Inputs:
- x (Tensor): batch of videos with dimensions (batch, channel, time, height, width)
- """
- def __init__(
- self,
- num_classes: int = 400,
- dropout: float = 0.2,
- norm_layer: Optional[Callable[..., torch.nn.Module]] = None,
- ) -> None:
- super().__init__()
- _log_api_usage_once(self)
- if norm_layer is None:
- norm_layer = partial(nn.BatchNorm3d, eps=0.001, momentum=0.001)
- self.features = nn.Sequential(
- TemporalSeparableConv(3, 64, 7, 2, 3, norm_layer),
- nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
- Conv3dNormActivation(
- 64,
- 64,
- kernel_size=1,
- stride=1,
- norm_layer=norm_layer,
- ),
- TemporalSeparableConv(64, 192, 3, 1, 1, norm_layer),
- nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
- SepInceptionBlock3D(192, 64, 96, 128, 16, 32, 32, norm_layer),
- SepInceptionBlock3D(256, 128, 128, 192, 32, 96, 64, norm_layer),
- nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1)),
- SepInceptionBlock3D(480, 192, 96, 208, 16, 48, 64, norm_layer),
- SepInceptionBlock3D(512, 160, 112, 224, 24, 64, 64, norm_layer),
- SepInceptionBlock3D(512, 128, 128, 256, 24, 64, 64, norm_layer),
- SepInceptionBlock3D(512, 112, 144, 288, 32, 64, 64, norm_layer),
- SepInceptionBlock3D(528, 256, 160, 320, 32, 128, 128, norm_layer),
- nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 0, 0)),
- SepInceptionBlock3D(832, 256, 160, 320, 32, 128, 128, norm_layer),
- SepInceptionBlock3D(832, 384, 192, 384, 48, 128, 128, norm_layer),
- )
- self.avgpool = nn.AvgPool3d(kernel_size=(2, 7, 7), stride=1)
- self.classifier = nn.Sequential(
- nn.Dropout(p=dropout),
- nn.Conv3d(1024, num_classes, kernel_size=1, stride=1, bias=True),
- )
- def forward(self, x):
- x = self.features(x)
- x = self.avgpool(x)
- x = self.classifier(x)
- x = torch.mean(x, dim=(2, 3, 4))
- return x
- class S3D_Weights(WeightsEnum):
- KINETICS400_V1 = Weights(
- url="https://download.pytorch.org/models/s3d-d76dad2f.pth",
- transforms=partial(
- VideoClassification,
- crop_size=(224, 224),
- resize_size=(256, 256),
- ),
- meta={
- "min_size": (224, 224),
- "min_temporal_size": 14,
- "categories": _KINETICS400_CATEGORIES,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/video_classification#s3d",
- "_docs": (
- "The weights aim to approximate the accuracy of the paper. The accuracies are estimated on clip-level "
- "with parameters `frame_rate=15`, `clips_per_video=1`, and `clip_len=128`."
- ),
- "num_params": 8320048,
- "_metrics": {
- "Kinetics-400": {
- "acc@1": 68.368,
- "acc@5": 88.050,
- }
- },
- "_ops": 17.979,
- "_file_size": 31.972,
- },
- )
- DEFAULT = KINETICS400_V1
- @register_model()
- @handle_legacy_interface(weights=("pretrained", S3D_Weights.KINETICS400_V1))
- def s3d(*, weights: Optional[S3D_Weights] = None, progress: bool = True, **kwargs: Any) -> S3D:
- """Construct Separable 3D CNN model.
- Reference: `Rethinking Spatiotemporal Feature Learning <https://arxiv.org/abs/1712.04851>`__.
- .. betastatus:: video module
- Args:
- weights (:class:`~torchvision.models.video.S3D_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.video.S3D_Weights`
- below for more details, and possible values. By default, no
- pre-trained weights are used.
- progress (bool): If True, displays a progress bar of the download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.video.S3D`` base class.
- Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/video/s3d.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.video.S3D_Weights
- :members:
- """
- weights = S3D_Weights.verify(weights)
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = S3D(**kwargs)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
|