123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408 |
- from functools import partial
- from typing import Any, Callable, List, Optional
- import torch
- import torch.nn as nn
- from torch import Tensor
- from ..transforms._presets import ImageClassification
- from ..utils import _log_api_usage_once
- from ._api import register_model, Weights, WeightsEnum
- from ._meta import _IMAGENET_CATEGORIES
- from ._utils import _ovewrite_named_param, handle_legacy_interface
- __all__ = [
- "ShuffleNetV2",
- "ShuffleNet_V2_X0_5_Weights",
- "ShuffleNet_V2_X1_0_Weights",
- "ShuffleNet_V2_X1_5_Weights",
- "ShuffleNet_V2_X2_0_Weights",
- "shufflenet_v2_x0_5",
- "shufflenet_v2_x1_0",
- "shufflenet_v2_x1_5",
- "shufflenet_v2_x2_0",
- ]
- def channel_shuffle(x: Tensor, groups: int) -> Tensor:
- batchsize, num_channels, height, width = x.size()
- channels_per_group = num_channels // groups
- # reshape
- x = x.view(batchsize, groups, channels_per_group, height, width)
- x = torch.transpose(x, 1, 2).contiguous()
- # flatten
- x = x.view(batchsize, num_channels, height, width)
- return x
- class InvertedResidual(nn.Module):
- def __init__(self, inp: int, oup: int, stride: int) -> None:
- super().__init__()
- if not (1 <= stride <= 3):
- raise ValueError("illegal stride value")
- self.stride = stride
- branch_features = oup // 2
- if (self.stride == 1) and (inp != branch_features << 1):
- raise ValueError(
- f"Invalid combination of stride {stride}, inp {inp} and oup {oup} values. If stride == 1 then inp should be equal to oup // 2 << 1."
- )
- if self.stride > 1:
- self.branch1 = nn.Sequential(
- self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
- nn.BatchNorm2d(inp),
- nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
- nn.BatchNorm2d(branch_features),
- nn.ReLU(inplace=True),
- )
- else:
- self.branch1 = nn.Sequential()
- self.branch2 = nn.Sequential(
- nn.Conv2d(
- inp if (self.stride > 1) else branch_features,
- branch_features,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=False,
- ),
- nn.BatchNorm2d(branch_features),
- nn.ReLU(inplace=True),
- self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
- nn.BatchNorm2d(branch_features),
- nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
- nn.BatchNorm2d(branch_features),
- nn.ReLU(inplace=True),
- )
- @staticmethod
- def depthwise_conv(
- i: int, o: int, kernel_size: int, stride: int = 1, padding: int = 0, bias: bool = False
- ) -> nn.Conv2d:
- return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
- def forward(self, x: Tensor) -> Tensor:
- if self.stride == 1:
- x1, x2 = x.chunk(2, dim=1)
- out = torch.cat((x1, self.branch2(x2)), dim=1)
- else:
- out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
- out = channel_shuffle(out, 2)
- return out
- class ShuffleNetV2(nn.Module):
- def __init__(
- self,
- stages_repeats: List[int],
- stages_out_channels: List[int],
- num_classes: int = 1000,
- inverted_residual: Callable[..., nn.Module] = InvertedResidual,
- ) -> None:
- super().__init__()
- _log_api_usage_once(self)
- if len(stages_repeats) != 3:
- raise ValueError("expected stages_repeats as list of 3 positive ints")
- if len(stages_out_channels) != 5:
- raise ValueError("expected stages_out_channels as list of 5 positive ints")
- self._stage_out_channels = stages_out_channels
- input_channels = 3
- output_channels = self._stage_out_channels[0]
- self.conv1 = nn.Sequential(
- nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
- nn.BatchNorm2d(output_channels),
- nn.ReLU(inplace=True),
- )
- input_channels = output_channels
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- # Static annotations for mypy
- self.stage2: nn.Sequential
- self.stage3: nn.Sequential
- self.stage4: nn.Sequential
- stage_names = [f"stage{i}" for i in [2, 3, 4]]
- for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]):
- seq = [inverted_residual(input_channels, output_channels, 2)]
- for i in range(repeats - 1):
- seq.append(inverted_residual(output_channels, output_channels, 1))
- setattr(self, name, nn.Sequential(*seq))
- input_channels = output_channels
- output_channels = self._stage_out_channels[-1]
- self.conv5 = nn.Sequential(
- nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
- nn.BatchNorm2d(output_channels),
- nn.ReLU(inplace=True),
- )
- self.fc = nn.Linear(output_channels, num_classes)
- def _forward_impl(self, x: Tensor) -> Tensor:
- # See note [TorchScript super()]
- x = self.conv1(x)
- x = self.maxpool(x)
- x = self.stage2(x)
- x = self.stage3(x)
- x = self.stage4(x)
- x = self.conv5(x)
- x = x.mean([2, 3]) # globalpool
- x = self.fc(x)
- return x
- def forward(self, x: Tensor) -> Tensor:
- return self._forward_impl(x)
- def _shufflenetv2(
- weights: Optional[WeightsEnum],
- progress: bool,
- *args: Any,
- **kwargs: Any,
- ) -> ShuffleNetV2:
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = ShuffleNetV2(*args, **kwargs)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
- _COMMON_META = {
- "min_size": (1, 1),
- "categories": _IMAGENET_CATEGORIES,
- "recipe": "https://github.com/ericsun99/Shufflenet-v2-Pytorch",
- }
- class ShuffleNet_V2_X0_5_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- # Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch
- url="https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 1366792,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 60.552,
- "acc@5": 81.746,
- }
- },
- "_ops": 0.04,
- "_file_size": 5.282,
- "_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""",
- },
- )
- DEFAULT = IMAGENET1K_V1
- class ShuffleNet_V2_X1_0_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- # Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch
- url="https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 2278604,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 69.362,
- "acc@5": 88.316,
- }
- },
- "_ops": 0.145,
- "_file_size": 8.791,
- "_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""",
- },
- )
- DEFAULT = IMAGENET1K_V1
- class ShuffleNet_V2_X1_5_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/shufflenetv2_x1_5-3c479a10.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/pytorch/vision/pull/5906",
- "num_params": 3503624,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 72.996,
- "acc@5": 91.086,
- }
- },
- "_ops": 0.296,
- "_file_size": 13.557,
- "_docs": """
- These weights were trained from scratch by using TorchVision's `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V1
- class ShuffleNet_V2_X2_0_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/shufflenetv2_x2_0-8be3c8ee.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/pytorch/vision/pull/5906",
- "num_params": 7393996,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 76.230,
- "acc@5": 93.006,
- }
- },
- "_ops": 0.583,
- "_file_size": 28.433,
- "_docs": """
- These weights were trained from scratch by using TorchVision's `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V1
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1))
- def shufflenet_v2_x0_5(
- *, weights: Optional[ShuffleNet_V2_X0_5_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ShuffleNetV2:
- """
- Constructs a ShuffleNetV2 architecture with 0.5x output channels, as described in
- `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
- <https://arxiv.org/abs/1807.11164>`__.
- Args:
- weights (:class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights
- :members:
- """
- weights = ShuffleNet_V2_X0_5_Weights.verify(weights)
- return _shufflenetv2(weights, progress, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1))
- def shufflenet_v2_x1_0(
- *, weights: Optional[ShuffleNet_V2_X1_0_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ShuffleNetV2:
- """
- Constructs a ShuffleNetV2 architecture with 1.0x output channels, as described in
- `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
- <https://arxiv.org/abs/1807.11164>`__.
- Args:
- weights (:class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights
- :members:
- """
- weights = ShuffleNet_V2_X1_0_Weights.verify(weights)
- return _shufflenetv2(weights, progress, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1))
- def shufflenet_v2_x1_5(
- *, weights: Optional[ShuffleNet_V2_X1_5_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ShuffleNetV2:
- """
- Constructs a ShuffleNetV2 architecture with 1.5x output channels, as described in
- `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
- <https://arxiv.org/abs/1807.11164>`__.
- Args:
- weights (:class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights
- :members:
- """
- weights = ShuffleNet_V2_X1_5_Weights.verify(weights)
- return _shufflenetv2(weights, progress, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1))
- def shufflenet_v2_x2_0(
- *, weights: Optional[ShuffleNet_V2_X2_0_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ShuffleNetV2:
- """
- Constructs a ShuffleNetV2 architecture with 2.0x output channels, as described in
- `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
- <https://arxiv.org/abs/1807.11164>`__.
- Args:
- weights (:class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights
- :members:
- """
- weights = ShuffleNet_V2_X2_0_Weights.verify(weights)
- return _shufflenetv2(weights, progress, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs)
|