123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- from collections import OrderedDict
- from functools import partial
- from typing import Any, Dict, Optional
- from torch import nn, Tensor
- from torch.nn import functional as F
- from ...transforms._presets import SemanticSegmentation
- from ...utils import _log_api_usage_once
- from .._api import register_model, Weights, WeightsEnum
- from .._meta import _VOC_CATEGORIES
- from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter
- from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights, MobileNetV3
- __all__ = ["LRASPP", "LRASPP_MobileNet_V3_Large_Weights", "lraspp_mobilenet_v3_large"]
- class LRASPP(nn.Module):
- """
- Implements a Lite R-ASPP Network for semantic segmentation from
- `"Searching for MobileNetV3"
- <https://arxiv.org/abs/1905.02244>`_.
- Args:
- backbone (nn.Module): the network used to compute the features for the model.
- The backbone should return an OrderedDict[Tensor], with the key being
- "high" for the high level feature map and "low" for the low level feature map.
- low_channels (int): the number of channels of the low level features.
- high_channels (int): the number of channels of the high level features.
- num_classes (int, optional): number of output classes of the model (including the background).
- inter_channels (int, optional): the number of channels for intermediate computations.
- """
- def __init__(
- self, backbone: nn.Module, low_channels: int, high_channels: int, num_classes: int, inter_channels: int = 128
- ) -> None:
- super().__init__()
- _log_api_usage_once(self)
- self.backbone = backbone
- self.classifier = LRASPPHead(low_channels, high_channels, num_classes, inter_channels)
- def forward(self, input: Tensor) -> Dict[str, Tensor]:
- features = self.backbone(input)
- out = self.classifier(features)
- out = F.interpolate(out, size=input.shape[-2:], mode="bilinear", align_corners=False)
- result = OrderedDict()
- result["out"] = out
- return result
- class LRASPPHead(nn.Module):
- def __init__(self, low_channels: int, high_channels: int, num_classes: int, inter_channels: int) -> None:
- super().__init__()
- self.cbr = nn.Sequential(
- nn.Conv2d(high_channels, inter_channels, 1, bias=False),
- nn.BatchNorm2d(inter_channels),
- nn.ReLU(inplace=True),
- )
- self.scale = nn.Sequential(
- nn.AdaptiveAvgPool2d(1),
- nn.Conv2d(high_channels, inter_channels, 1, bias=False),
- nn.Sigmoid(),
- )
- self.low_classifier = nn.Conv2d(low_channels, num_classes, 1)
- self.high_classifier = nn.Conv2d(inter_channels, num_classes, 1)
- def forward(self, input: Dict[str, Tensor]) -> Tensor:
- low = input["low"]
- high = input["high"]
- x = self.cbr(high)
- s = self.scale(high)
- x = x * s
- x = F.interpolate(x, size=low.shape[-2:], mode="bilinear", align_corners=False)
- return self.low_classifier(low) + self.high_classifier(x)
- def _lraspp_mobilenetv3(backbone: MobileNetV3, num_classes: int) -> LRASPP:
- backbone = backbone.features
- # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
- # The first and last blocks are always included because they are the C0 (conv1) and Cn.
- stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
- low_pos = stage_indices[-4] # use C2 here which has output_stride = 8
- high_pos = stage_indices[-1] # use C5 which has output_stride = 16
- low_channels = backbone[low_pos].out_channels
- high_channels = backbone[high_pos].out_channels
- backbone = IntermediateLayerGetter(backbone, return_layers={str(low_pos): "low", str(high_pos): "high"})
- return LRASPP(backbone, low_channels, high_channels, num_classes)
- class LRASPP_MobileNet_V3_Large_Weights(WeightsEnum):
- COCO_WITH_VOC_LABELS_V1 = Weights(
- url="https://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pth",
- transforms=partial(SemanticSegmentation, resize_size=520),
- meta={
- "num_params": 3221538,
- "categories": _VOC_CATEGORIES,
- "min_size": (1, 1),
- "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_large",
- "_metrics": {
- "COCO-val2017-VOC-labels": {
- "miou": 57.9,
- "pixel_acc": 91.2,
- }
- },
- "_ops": 2.086,
- "_file_size": 12.49,
- "_docs": """
- These weights were trained on a subset of COCO, using only the 20 categories that are present in the
- Pascal VOC dataset.
- """,
- },
- )
- DEFAULT = COCO_WITH_VOC_LABELS_V1
- @register_model()
- @handle_legacy_interface(
- weights=("pretrained", LRASPP_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1),
- weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
- )
- def lraspp_mobilenet_v3_large(
- *,
- weights: Optional[LRASPP_MobileNet_V3_Large_Weights] = None,
- progress: bool = True,
- num_classes: Optional[int] = None,
- weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
- **kwargs: Any,
- ) -> LRASPP:
- """Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone from
- `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_ paper.
- .. betastatus:: segmentation module
- Args:
- weights (:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- num_classes (int, optional): number of output classes of the model (including the background).
- aux_loss (bool, optional): If True, it uses an auxiliary loss.
- weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained
- weights for the backbone.
- **kwargs: parameters passed to the ``torchvision.models.segmentation.LRASPP``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/lraspp.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights
- :members:
- """
- if kwargs.pop("aux_loss", False):
- raise NotImplementedError("This model does not use auxiliary loss")
- weights = LRASPP_MobileNet_V3_Large_Weights.verify(weights)
- weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)
- if weights is not None:
- weights_backbone = None
- num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
- elif num_classes is None:
- num_classes = 21
- backbone = mobilenet_v3_large(weights=weights_backbone, dilated=True)
- model = _lraspp_mobilenetv3(backbone, num_classes)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
|