123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- from functools import partial
- from typing import Any, Optional
- from torch import nn
- from ...transforms._presets import SemanticSegmentation
- from .._api import register_model, Weights, WeightsEnum
- from .._meta import _VOC_CATEGORIES
- from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter
- from ..resnet import ResNet, resnet101, ResNet101_Weights, resnet50, ResNet50_Weights
- from ._utils import _SimpleSegmentationModel
- __all__ = ["FCN", "FCN_ResNet50_Weights", "FCN_ResNet101_Weights", "fcn_resnet50", "fcn_resnet101"]
- class FCN(_SimpleSegmentationModel):
- """
- Implements FCN model from
- `"Fully Convolutional Networks for Semantic Segmentation"
- <https://arxiv.org/abs/1411.4038>`_.
- Args:
- backbone (nn.Module): the network used to compute the features for the model.
- The backbone should return an OrderedDict[Tensor], with the key being
- "out" for the last feature map used, and "aux" if an auxiliary classifier
- is used.
- classifier (nn.Module): module that takes the "out" element returned from
- the backbone and returns a dense prediction.
- aux_classifier (nn.Module, optional): auxiliary classifier used during training
- """
- pass
- class FCNHead(nn.Sequential):
- def __init__(self, in_channels: int, channels: int) -> None:
- inter_channels = in_channels // 4
- layers = [
- nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
- nn.BatchNorm2d(inter_channels),
- nn.ReLU(),
- nn.Dropout(0.1),
- nn.Conv2d(inter_channels, channels, 1),
- ]
- super().__init__(*layers)
- _COMMON_META = {
- "categories": _VOC_CATEGORIES,
- "min_size": (1, 1),
- "_docs": """
- These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC
- dataset.
- """,
- }
- class FCN_ResNet50_Weights(WeightsEnum):
- COCO_WITH_VOC_LABELS_V1 = Weights(
- url="https://download.pytorch.org/models/fcn_resnet50_coco-1167a1af.pth",
- transforms=partial(SemanticSegmentation, resize_size=520),
- meta={
- **_COMMON_META,
- "num_params": 35322218,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet50",
- "_metrics": {
- "COCO-val2017-VOC-labels": {
- "miou": 60.5,
- "pixel_acc": 91.4,
- }
- },
- "_ops": 152.717,
- "_file_size": 135.009,
- },
- )
- DEFAULT = COCO_WITH_VOC_LABELS_V1
- class FCN_ResNet101_Weights(WeightsEnum):
- COCO_WITH_VOC_LABELS_V1 = Weights(
- url="https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth",
- transforms=partial(SemanticSegmentation, resize_size=520),
- meta={
- **_COMMON_META,
- "num_params": 54314346,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet101",
- "_metrics": {
- "COCO-val2017-VOC-labels": {
- "miou": 63.7,
- "pixel_acc": 91.9,
- }
- },
- "_ops": 232.738,
- "_file_size": 207.711,
- },
- )
- DEFAULT = COCO_WITH_VOC_LABELS_V1
- def _fcn_resnet(
- backbone: ResNet,
- num_classes: int,
- aux: Optional[bool],
- ) -> FCN:
- return_layers = {"layer4": "out"}
- if aux:
- return_layers["layer3"] = "aux"
- backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)
- aux_classifier = FCNHead(1024, num_classes) if aux else None
- classifier = FCNHead(2048, num_classes)
- return FCN(backbone, classifier, aux_classifier)
- @register_model()
- @handle_legacy_interface(
- weights=("pretrained", FCN_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1),
- weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
- )
- def fcn_resnet50(
- *,
- weights: Optional[FCN_ResNet50_Weights] = None,
- progress: bool = True,
- num_classes: Optional[int] = None,
- aux_loss: Optional[bool] = None,
- weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
- **kwargs: Any,
- ) -> FCN:
- """Fully-Convolutional Network model with a ResNet-50 backbone from the `Fully Convolutional
- Networks for Semantic Segmentation <https://arxiv.org/abs/1411.4038>`_ paper.
- .. betastatus:: segmentation module
- Args:
- weights (:class:`~torchvision.models.segmentation.FCN_ResNet50_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.segmentation.FCN_ResNet50_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- num_classes (int, optional): number of output classes of the model (including the background).
- aux_loss (bool, optional): If True, it uses an auxiliary loss.
- weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained
- weights for the backbone.
- **kwargs: parameters passed to the ``torchvision.models.segmentation.fcn.FCN``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/fcn.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.segmentation.FCN_ResNet50_Weights
- :members:
- """
- weights = FCN_ResNet50_Weights.verify(weights)
- weights_backbone = ResNet50_Weights.verify(weights_backbone)
- if weights is not None:
- weights_backbone = None
- num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
- aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
- elif num_classes is None:
- num_classes = 21
- backbone = resnet50(weights=weights_backbone, replace_stride_with_dilation=[False, True, True])
- model = _fcn_resnet(backbone, num_classes, aux_loss)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
- @register_model()
- @handle_legacy_interface(
- weights=("pretrained", FCN_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1),
- weights_backbone=("pretrained_backbone", ResNet101_Weights.IMAGENET1K_V1),
- )
- def fcn_resnet101(
- *,
- weights: Optional[FCN_ResNet101_Weights] = None,
- progress: bool = True,
- num_classes: Optional[int] = None,
- aux_loss: Optional[bool] = None,
- weights_backbone: Optional[ResNet101_Weights] = ResNet101_Weights.IMAGENET1K_V1,
- **kwargs: Any,
- ) -> FCN:
- """Fully-Convolutional Network model with a ResNet-101 backbone from the `Fully Convolutional
- Networks for Semantic Segmentation <https://arxiv.org/abs/1411.4038>`_ paper.
- .. betastatus:: segmentation module
- Args:
- weights (:class:`~torchvision.models.segmentation.FCN_ResNet101_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.segmentation.FCN_ResNet101_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- num_classes (int, optional): number of output classes of the model (including the background).
- aux_loss (bool, optional): If True, it uses an auxiliary loss.
- weights_backbone (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained
- weights for the backbone.
- **kwargs: parameters passed to the ``torchvision.models.segmentation.fcn.FCN``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/fcn.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.segmentation.FCN_ResNet101_Weights
- :members:
- """
- weights = FCN_ResNet101_Weights.verify(weights)
- weights_backbone = ResNet101_Weights.verify(weights_backbone)
- if weights is not None:
- weights_backbone = None
- num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
- aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
- elif num_classes is None:
- num_classes = 21
- backbone = resnet101(weights=weights_backbone, replace_stride_with_dilation=[False, True, True])
- model = _fcn_resnet(backbone, num_classes, aux_loss)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
|