| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 | 
							- from functools import partial
 
- from typing import Any, Optional
 
- from torch import nn
 
- from ...transforms._presets import SemanticSegmentation
 
- from .._api import register_model, Weights, WeightsEnum
 
- from .._meta import _VOC_CATEGORIES
 
- from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter
 
- from ..resnet import ResNet, resnet101, ResNet101_Weights, resnet50, ResNet50_Weights
 
- from ._utils import _SimpleSegmentationModel
 
- __all__ = ["FCN", "FCN_ResNet50_Weights", "FCN_ResNet101_Weights", "fcn_resnet50", "fcn_resnet101"]
 
- class FCN(_SimpleSegmentationModel):
 
-     """
 
-     Implements FCN model from
 
-     `"Fully Convolutional Networks for Semantic Segmentation"
 
-     <https://arxiv.org/abs/1411.4038>`_.
 
-     Args:
 
-         backbone (nn.Module): the network used to compute the features for the model.
 
-             The backbone should return an OrderedDict[Tensor], with the key being
 
-             "out" for the last feature map used, and "aux" if an auxiliary classifier
 
-             is used.
 
-         classifier (nn.Module): module that takes the "out" element returned from
 
-             the backbone and returns a dense prediction.
 
-         aux_classifier (nn.Module, optional): auxiliary classifier used during training
 
-     """
 
-     pass
 
- class FCNHead(nn.Sequential):
 
-     def __init__(self, in_channels: int, channels: int) -> None:
 
-         inter_channels = in_channels // 4
 
-         layers = [
 
-             nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
 
-             nn.BatchNorm2d(inter_channels),
 
-             nn.ReLU(),
 
-             nn.Dropout(0.1),
 
-             nn.Conv2d(inter_channels, channels, 1),
 
-         ]
 
-         super().__init__(*layers)
 
- _COMMON_META = {
 
-     "categories": _VOC_CATEGORIES,
 
-     "min_size": (1, 1),
 
-     "_docs": """
 
-         These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC
 
-         dataset.
 
-     """,
 
- }
 
- class FCN_ResNet50_Weights(WeightsEnum):
 
-     COCO_WITH_VOC_LABELS_V1 = Weights(
 
-         url="https://download.pytorch.org/models/fcn_resnet50_coco-1167a1af.pth",
 
-         transforms=partial(SemanticSegmentation, resize_size=520),
 
-         meta={
 
-             **_COMMON_META,
 
-             "num_params": 35322218,
 
-             "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet50",
 
-             "_metrics": {
 
-                 "COCO-val2017-VOC-labels": {
 
-                     "miou": 60.5,
 
-                     "pixel_acc": 91.4,
 
-                 }
 
-             },
 
-             "_ops": 152.717,
 
-             "_file_size": 135.009,
 
-         },
 
-     )
 
-     DEFAULT = COCO_WITH_VOC_LABELS_V1
 
- class FCN_ResNet101_Weights(WeightsEnum):
 
-     COCO_WITH_VOC_LABELS_V1 = Weights(
 
-         url="https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth",
 
-         transforms=partial(SemanticSegmentation, resize_size=520),
 
-         meta={
 
-             **_COMMON_META,
 
-             "num_params": 54314346,
 
-             "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet101",
 
-             "_metrics": {
 
-                 "COCO-val2017-VOC-labels": {
 
-                     "miou": 63.7,
 
-                     "pixel_acc": 91.9,
 
-                 }
 
-             },
 
-             "_ops": 232.738,
 
-             "_file_size": 207.711,
 
-         },
 
-     )
 
-     DEFAULT = COCO_WITH_VOC_LABELS_V1
 
- def _fcn_resnet(
 
-     backbone: ResNet,
 
-     num_classes: int,
 
-     aux: Optional[bool],
 
- ) -> FCN:
 
-     return_layers = {"layer4": "out"}
 
-     if aux:
 
-         return_layers["layer3"] = "aux"
 
-     backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)
 
-     aux_classifier = FCNHead(1024, num_classes) if aux else None
 
-     classifier = FCNHead(2048, num_classes)
 
-     return FCN(backbone, classifier, aux_classifier)
 
- @register_model()
 
- @handle_legacy_interface(
 
-     weights=("pretrained", FCN_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1),
 
-     weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
 
- )
 
- def fcn_resnet50(
 
-     *,
 
-     weights: Optional[FCN_ResNet50_Weights] = None,
 
-     progress: bool = True,
 
-     num_classes: Optional[int] = None,
 
-     aux_loss: Optional[bool] = None,
 
-     weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
 
-     **kwargs: Any,
 
- ) -> FCN:
 
-     """Fully-Convolutional Network model with a ResNet-50 backbone from the `Fully Convolutional
 
-     Networks for Semantic Segmentation <https://arxiv.org/abs/1411.4038>`_ paper.
 
-     .. betastatus:: segmentation module
 
-     Args:
 
-         weights (:class:`~torchvision.models.segmentation.FCN_ResNet50_Weights`, optional): The
 
-             pretrained weights to use. See
 
-             :class:`~torchvision.models.segmentation.FCN_ResNet50_Weights` below for
 
-             more details, and possible values. By default, no pre-trained
 
-             weights are used.
 
-         progress (bool, optional): If True, displays a progress bar of the
 
-             download to stderr. Default is True.
 
-         num_classes (int, optional): number of output classes of the model (including the background).
 
-         aux_loss (bool, optional): If True, it uses an auxiliary loss.
 
-         weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained
 
-             weights for the backbone.
 
-         **kwargs: parameters passed to the ``torchvision.models.segmentation.fcn.FCN``
 
-             base class. Please refer to the `source code
 
-             <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/fcn.py>`_
 
-             for more details about this class.
 
-     .. autoclass:: torchvision.models.segmentation.FCN_ResNet50_Weights
 
-         :members:
 
-     """
 
-     weights = FCN_ResNet50_Weights.verify(weights)
 
-     weights_backbone = ResNet50_Weights.verify(weights_backbone)
 
-     if weights is not None:
 
-         weights_backbone = None
 
-         num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
 
-         aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
 
-     elif num_classes is None:
 
-         num_classes = 21
 
-     backbone = resnet50(weights=weights_backbone, replace_stride_with_dilation=[False, True, True])
 
-     model = _fcn_resnet(backbone, num_classes, aux_loss)
 
-     if weights is not None:
 
-         model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
 
-     return model
 
- @register_model()
 
- @handle_legacy_interface(
 
-     weights=("pretrained", FCN_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1),
 
-     weights_backbone=("pretrained_backbone", ResNet101_Weights.IMAGENET1K_V1),
 
- )
 
- def fcn_resnet101(
 
-     *,
 
-     weights: Optional[FCN_ResNet101_Weights] = None,
 
-     progress: bool = True,
 
-     num_classes: Optional[int] = None,
 
-     aux_loss: Optional[bool] = None,
 
-     weights_backbone: Optional[ResNet101_Weights] = ResNet101_Weights.IMAGENET1K_V1,
 
-     **kwargs: Any,
 
- ) -> FCN:
 
-     """Fully-Convolutional Network model with a ResNet-101 backbone from the `Fully Convolutional
 
-     Networks for Semantic Segmentation <https://arxiv.org/abs/1411.4038>`_ paper.
 
-     .. betastatus:: segmentation module
 
-     Args:
 
-         weights (:class:`~torchvision.models.segmentation.FCN_ResNet101_Weights`, optional): The
 
-             pretrained weights to use. See
 
-             :class:`~torchvision.models.segmentation.FCN_ResNet101_Weights` below for
 
-             more details, and possible values. By default, no pre-trained
 
-             weights are used.
 
-         progress (bool, optional): If True, displays a progress bar of the
 
-             download to stderr. Default is True.
 
-         num_classes (int, optional): number of output classes of the model (including the background).
 
-         aux_loss (bool, optional): If True, it uses an auxiliary loss.
 
-         weights_backbone (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained
 
-             weights for the backbone.
 
-         **kwargs: parameters passed to the ``torchvision.models.segmentation.fcn.FCN``
 
-             base class. Please refer to the `source code
 
-             <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/fcn.py>`_
 
-             for more details about this class.
 
-     .. autoclass:: torchvision.models.segmentation.FCN_ResNet101_Weights
 
-         :members:
 
-     """
 
-     weights = FCN_ResNet101_Weights.verify(weights)
 
-     weights_backbone = ResNet101_Weights.verify(weights_backbone)
 
-     if weights is not None:
 
-         weights_backbone = None
 
-         num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
 
-         aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
 
-     elif num_classes is None:
 
-         num_classes = 21
 
-     backbone = resnet101(weights=weights_backbone, replace_stride_with_dilation=[False, True, True])
 
-     model = _fcn_resnet(backbone, num_classes, aux_loss)
 
-     if weights is not None:
 
-         model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
 
-     return model
 
 
  |