123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390 |
- from functools import partial
- from typing import Any, List, Optional
- import torch
- from torch import nn
- from torch.nn import functional as F
- from ...transforms._presets import SemanticSegmentation
- from .._api import register_model, Weights, WeightsEnum
- from .._meta import _VOC_CATEGORIES
- from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter
- from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights, MobileNetV3
- from ..resnet import ResNet, resnet101, ResNet101_Weights, resnet50, ResNet50_Weights
- from ._utils import _SimpleSegmentationModel
- from .fcn import FCNHead
- __all__ = [
- "DeepLabV3",
- "DeepLabV3_ResNet50_Weights",
- "DeepLabV3_ResNet101_Weights",
- "DeepLabV3_MobileNet_V3_Large_Weights",
- "deeplabv3_mobilenet_v3_large",
- "deeplabv3_resnet50",
- "deeplabv3_resnet101",
- ]
- class DeepLabV3(_SimpleSegmentationModel):
- """
- Implements DeepLabV3 model from
- `"Rethinking Atrous Convolution for Semantic Image Segmentation"
- <https://arxiv.org/abs/1706.05587>`_.
- Args:
- backbone (nn.Module): the network used to compute the features for the model.
- The backbone should return an OrderedDict[Tensor], with the key being
- "out" for the last feature map used, and "aux" if an auxiliary classifier
- is used.
- classifier (nn.Module): module that takes the "out" element returned from
- the backbone and returns a dense prediction.
- aux_classifier (nn.Module, optional): auxiliary classifier used during training
- """
- pass
- class DeepLabHead(nn.Sequential):
- def __init__(self, in_channels: int, num_classes: int) -> None:
- super().__init__(
- ASPP(in_channels, [12, 24, 36]),
- nn.Conv2d(256, 256, 3, padding=1, bias=False),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- nn.Conv2d(256, num_classes, 1),
- )
- class ASPPConv(nn.Sequential):
- def __init__(self, in_channels: int, out_channels: int, dilation: int) -> None:
- modules = [
- nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False),
- nn.BatchNorm2d(out_channels),
- nn.ReLU(),
- ]
- super().__init__(*modules)
- class ASPPPooling(nn.Sequential):
- def __init__(self, in_channels: int, out_channels: int) -> None:
- super().__init__(
- nn.AdaptiveAvgPool2d(1),
- nn.Conv2d(in_channels, out_channels, 1, bias=False),
- nn.BatchNorm2d(out_channels),
- nn.ReLU(),
- )
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- size = x.shape[-2:]
- for mod in self:
- x = mod(x)
- return F.interpolate(x, size=size, mode="bilinear", align_corners=False)
- class ASPP(nn.Module):
- def __init__(self, in_channels: int, atrous_rates: List[int], out_channels: int = 256) -> None:
- super().__init__()
- modules = []
- modules.append(
- nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU())
- )
- rates = tuple(atrous_rates)
- for rate in rates:
- modules.append(ASPPConv(in_channels, out_channels, rate))
- modules.append(ASPPPooling(in_channels, out_channels))
- self.convs = nn.ModuleList(modules)
- self.project = nn.Sequential(
- nn.Conv2d(len(self.convs) * out_channels, out_channels, 1, bias=False),
- nn.BatchNorm2d(out_channels),
- nn.ReLU(),
- nn.Dropout(0.5),
- )
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- _res = []
- for conv in self.convs:
- _res.append(conv(x))
- res = torch.cat(_res, dim=1)
- return self.project(res)
- def _deeplabv3_resnet(
- backbone: ResNet,
- num_classes: int,
- aux: Optional[bool],
- ) -> DeepLabV3:
- return_layers = {"layer4": "out"}
- if aux:
- return_layers["layer3"] = "aux"
- backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)
- aux_classifier = FCNHead(1024, num_classes) if aux else None
- classifier = DeepLabHead(2048, num_classes)
- return DeepLabV3(backbone, classifier, aux_classifier)
- _COMMON_META = {
- "categories": _VOC_CATEGORIES,
- "min_size": (1, 1),
- "_docs": """
- These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC
- dataset.
- """,
- }
- class DeepLabV3_ResNet50_Weights(WeightsEnum):
- COCO_WITH_VOC_LABELS_V1 = Weights(
- url="https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth",
- transforms=partial(SemanticSegmentation, resize_size=520),
- meta={
- **_COMMON_META,
- "num_params": 42004074,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet50",
- "_metrics": {
- "COCO-val2017-VOC-labels": {
- "miou": 66.4,
- "pixel_acc": 92.4,
- }
- },
- "_ops": 178.722,
- "_file_size": 160.515,
- },
- )
- DEFAULT = COCO_WITH_VOC_LABELS_V1
- class DeepLabV3_ResNet101_Weights(WeightsEnum):
- COCO_WITH_VOC_LABELS_V1 = Weights(
- url="https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth",
- transforms=partial(SemanticSegmentation, resize_size=520),
- meta={
- **_COMMON_META,
- "num_params": 60996202,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet101",
- "_metrics": {
- "COCO-val2017-VOC-labels": {
- "miou": 67.4,
- "pixel_acc": 92.4,
- }
- },
- "_ops": 258.743,
- "_file_size": 233.217,
- },
- )
- DEFAULT = COCO_WITH_VOC_LABELS_V1
- class DeepLabV3_MobileNet_V3_Large_Weights(WeightsEnum):
- COCO_WITH_VOC_LABELS_V1 = Weights(
- url="https://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pth",
- transforms=partial(SemanticSegmentation, resize_size=520),
- meta={
- **_COMMON_META,
- "num_params": 11029328,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_mobilenet_v3_large",
- "_metrics": {
- "COCO-val2017-VOC-labels": {
- "miou": 60.3,
- "pixel_acc": 91.2,
- }
- },
- "_ops": 10.452,
- "_file_size": 42.301,
- },
- )
- DEFAULT = COCO_WITH_VOC_LABELS_V1
- def _deeplabv3_mobilenetv3(
- backbone: MobileNetV3,
- num_classes: int,
- aux: Optional[bool],
- ) -> DeepLabV3:
- backbone = backbone.features
- # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
- # The first and last blocks are always included because they are the C0 (conv1) and Cn.
- stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
- out_pos = stage_indices[-1] # use C5 which has output_stride = 16
- out_inplanes = backbone[out_pos].out_channels
- aux_pos = stage_indices[-4] # use C2 here which has output_stride = 8
- aux_inplanes = backbone[aux_pos].out_channels
- return_layers = {str(out_pos): "out"}
- if aux:
- return_layers[str(aux_pos)] = "aux"
- backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)
- aux_classifier = FCNHead(aux_inplanes, num_classes) if aux else None
- classifier = DeepLabHead(out_inplanes, num_classes)
- return DeepLabV3(backbone, classifier, aux_classifier)
- @register_model()
- @handle_legacy_interface(
- weights=("pretrained", DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1),
- weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
- )
- def deeplabv3_resnet50(
- *,
- weights: Optional[DeepLabV3_ResNet50_Weights] = None,
- progress: bool = True,
- num_classes: Optional[int] = None,
- aux_loss: Optional[bool] = None,
- weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
- **kwargs: Any,
- ) -> DeepLabV3:
- """Constructs a DeepLabV3 model with a ResNet-50 backbone.
- .. betastatus:: segmentation module
- Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.
- Args:
- weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- num_classes (int, optional): number of output classes of the model (including the background)
- aux_loss (bool, optional): If True, it uses an auxiliary loss
- weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the
- backbone
- **kwargs: unused
- .. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet50_Weights
- :members:
- """
- weights = DeepLabV3_ResNet50_Weights.verify(weights)
- weights_backbone = ResNet50_Weights.verify(weights_backbone)
- if weights is not None:
- weights_backbone = None
- num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
- aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
- elif num_classes is None:
- num_classes = 21
- backbone = resnet50(weights=weights_backbone, replace_stride_with_dilation=[False, True, True])
- model = _deeplabv3_resnet(backbone, num_classes, aux_loss)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
- @register_model()
- @handle_legacy_interface(
- weights=("pretrained", DeepLabV3_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1),
- weights_backbone=("pretrained_backbone", ResNet101_Weights.IMAGENET1K_V1),
- )
- def deeplabv3_resnet101(
- *,
- weights: Optional[DeepLabV3_ResNet101_Weights] = None,
- progress: bool = True,
- num_classes: Optional[int] = None,
- aux_loss: Optional[bool] = None,
- weights_backbone: Optional[ResNet101_Weights] = ResNet101_Weights.IMAGENET1K_V1,
- **kwargs: Any,
- ) -> DeepLabV3:
- """Constructs a DeepLabV3 model with a ResNet-101 backbone.
- .. betastatus:: segmentation module
- Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.
- Args:
- weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- num_classes (int, optional): number of output classes of the model (including the background)
- aux_loss (bool, optional): If True, it uses an auxiliary loss
- weights_backbone (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained weights for the
- backbone
- **kwargs: unused
- .. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet101_Weights
- :members:
- """
- weights = DeepLabV3_ResNet101_Weights.verify(weights)
- weights_backbone = ResNet101_Weights.verify(weights_backbone)
- if weights is not None:
- weights_backbone = None
- num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
- aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
- elif num_classes is None:
- num_classes = 21
- backbone = resnet101(weights=weights_backbone, replace_stride_with_dilation=[False, True, True])
- model = _deeplabv3_resnet(backbone, num_classes, aux_loss)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
- @register_model()
- @handle_legacy_interface(
- weights=("pretrained", DeepLabV3_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1),
- weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
- )
- def deeplabv3_mobilenet_v3_large(
- *,
- weights: Optional[DeepLabV3_MobileNet_V3_Large_Weights] = None,
- progress: bool = True,
- num_classes: Optional[int] = None,
- aux_loss: Optional[bool] = None,
- weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
- **kwargs: Any,
- ) -> DeepLabV3:
- """Constructs a DeepLabV3 model with a MobileNetV3-Large backbone.
- Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.
- Args:
- weights (:class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- num_classes (int, optional): number of output classes of the model (including the background)
- aux_loss (bool, optional): If True, it uses an auxiliary loss
- weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights
- for the backbone
- **kwargs: unused
- .. autoclass:: torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights
- :members:
- """
- weights = DeepLabV3_MobileNet_V3_Large_Weights.verify(weights)
- weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)
- if weights is not None:
- weights_backbone = None
- num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
- aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
- elif num_classes is None:
- num_classes = 21
- backbone = mobilenet_v3_large(weights=weights_backbone, dilated=True)
- model = _deeplabv3_mobilenetv3(backbone, num_classes, aux_loss)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
|