123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- from typing import Any, List, Optional, Union
- import torch
- from torch import nn
- def _replace_relu(module: nn.Module) -> None:
- reassign = {}
- for name, mod in module.named_children():
- _replace_relu(mod)
- # Checking for explicit type instead of instance
- # as we only want to replace modules of the exact type
- # not inherited classes
- if type(mod) is nn.ReLU or type(mod) is nn.ReLU6:
- reassign[name] = nn.ReLU(inplace=False)
- for key, value in reassign.items():
- module._modules[key] = value
- def quantize_model(model: nn.Module, backend: str) -> None:
- _dummy_input_data = torch.rand(1, 3, 299, 299)
- if backend not in torch.backends.quantized.supported_engines:
- raise RuntimeError("Quantized backend not supported ")
- torch.backends.quantized.engine = backend
- model.eval()
- # Make sure that weight qconfig matches that of the serialized models
- if backend == "fbgemm":
- model.qconfig = torch.ao.quantization.QConfig( # type: ignore[assignment]
- activation=torch.ao.quantization.default_observer,
- weight=torch.ao.quantization.default_per_channel_weight_observer,
- )
- elif backend == "qnnpack":
- model.qconfig = torch.ao.quantization.QConfig( # type: ignore[assignment]
- activation=torch.ao.quantization.default_observer, weight=torch.ao.quantization.default_weight_observer
- )
- # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
- model.fuse_model() # type: ignore[operator]
- torch.ao.quantization.prepare(model, inplace=True)
- model(_dummy_input_data)
- torch.ao.quantization.convert(model, inplace=True)
- def _fuse_modules(
- model: nn.Module, modules_to_fuse: Union[List[str], List[List[str]]], is_qat: Optional[bool], **kwargs: Any
- ):
- if is_qat is None:
- is_qat = model.training
- method = torch.ao.quantization.fuse_modules_qat if is_qat else torch.ao.quantization.fuse_modules
- return method(model, modules_to_fuse, **kwargs)
|