123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427 |
- from functools import partial
- from typing import Any, List, Optional, Union
- import torch
- import torch.nn as nn
- from torch import Tensor
- from torchvision.models import shufflenetv2
- from ...transforms._presets import ImageClassification
- from .._api import register_model, Weights, WeightsEnum
- from .._meta import _IMAGENET_CATEGORIES
- from .._utils import _ovewrite_named_param, handle_legacy_interface
- from ..shufflenetv2 import (
- ShuffleNet_V2_X0_5_Weights,
- ShuffleNet_V2_X1_0_Weights,
- ShuffleNet_V2_X1_5_Weights,
- ShuffleNet_V2_X2_0_Weights,
- )
- from .utils import _fuse_modules, _replace_relu, quantize_model
- __all__ = [
- "QuantizableShuffleNetV2",
- "ShuffleNet_V2_X0_5_QuantizedWeights",
- "ShuffleNet_V2_X1_0_QuantizedWeights",
- "ShuffleNet_V2_X1_5_QuantizedWeights",
- "ShuffleNet_V2_X2_0_QuantizedWeights",
- "shufflenet_v2_x0_5",
- "shufflenet_v2_x1_0",
- "shufflenet_v2_x1_5",
- "shufflenet_v2_x2_0",
- ]
- class QuantizableInvertedResidual(shufflenetv2.InvertedResidual):
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, **kwargs)
- self.cat = nn.quantized.FloatFunctional()
- def forward(self, x: Tensor) -> Tensor:
- if self.stride == 1:
- x1, x2 = x.chunk(2, dim=1)
- out = self.cat.cat([x1, self.branch2(x2)], dim=1)
- else:
- out = self.cat.cat([self.branch1(x), self.branch2(x)], dim=1)
- out = shufflenetv2.channel_shuffle(out, 2)
- return out
- class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2):
- # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs) # type: ignore[misc]
- self.quant = torch.ao.quantization.QuantStub()
- self.dequant = torch.ao.quantization.DeQuantStub()
- def forward(self, x: Tensor) -> Tensor:
- x = self.quant(x)
- x = self._forward_impl(x)
- x = self.dequant(x)
- return x
- def fuse_model(self, is_qat: Optional[bool] = None) -> None:
- r"""Fuse conv/bn/relu modules in shufflenetv2 model
- Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
- Model is modified in place.
- .. note::
- Note that this operation does not change numerics
- and the model after modification is in floating point
- """
- for name, m in self._modules.items():
- if name in ["conv1", "conv5"] and m is not None:
- _fuse_modules(m, [["0", "1", "2"]], is_qat, inplace=True)
- for m in self.modules():
- if type(m) is QuantizableInvertedResidual:
- if len(m.branch1._modules.items()) > 0:
- _fuse_modules(m.branch1, [["0", "1"], ["2", "3", "4"]], is_qat, inplace=True)
- _fuse_modules(
- m.branch2,
- [["0", "1", "2"], ["3", "4"], ["5", "6", "7"]],
- is_qat,
- inplace=True,
- )
- def _shufflenetv2(
- stages_repeats: List[int],
- stages_out_channels: List[int],
- *,
- weights: Optional[WeightsEnum],
- progress: bool,
- quantize: bool,
- **kwargs: Any,
- ) -> QuantizableShuffleNetV2:
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- if "backend" in weights.meta:
- _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
- backend = kwargs.pop("backend", "fbgemm")
- model = QuantizableShuffleNetV2(stages_repeats, stages_out_channels, **kwargs)
- _replace_relu(model)
- if quantize:
- quantize_model(model, backend)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
- _COMMON_META = {
- "min_size": (1, 1),
- "categories": _IMAGENET_CATEGORIES,
- "backend": "fbgemm",
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
- "_docs": """
- These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized
- weights listed below.
- """,
- }
- class ShuffleNet_V2_X0_5_QuantizedWeights(WeightsEnum):
- IMAGENET1K_FBGEMM_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/shufflenetv2_x0.5_fbgemm-00845098.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 1366792,
- "unquantized": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 57.972,
- "acc@5": 79.780,
- }
- },
- "_ops": 0.04,
- "_file_size": 1.501,
- },
- )
- DEFAULT = IMAGENET1K_FBGEMM_V1
- class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum):
- IMAGENET1K_FBGEMM_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-1e62bb32.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 2278604,
- "unquantized": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 68.360,
- "acc@5": 87.582,
- }
- },
- "_ops": 0.145,
- "_file_size": 2.334,
- },
- )
- DEFAULT = IMAGENET1K_FBGEMM_V1
- class ShuffleNet_V2_X1_5_QuantizedWeights(WeightsEnum):
- IMAGENET1K_FBGEMM_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_5_fbgemm-d7401f05.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/pytorch/vision/pull/5906",
- "num_params": 3503624,
- "unquantized": ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 72.052,
- "acc@5": 90.700,
- }
- },
- "_ops": 0.296,
- "_file_size": 3.672,
- },
- )
- DEFAULT = IMAGENET1K_FBGEMM_V1
- class ShuffleNet_V2_X2_0_QuantizedWeights(WeightsEnum):
- IMAGENET1K_FBGEMM_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/shufflenetv2_x2_0_fbgemm-5cac526c.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/pytorch/vision/pull/5906",
- "num_params": 7393996,
- "unquantized": ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 75.354,
- "acc@5": 92.488,
- }
- },
- "_ops": 0.583,
- "_file_size": 7.467,
- },
- )
- DEFAULT = IMAGENET1K_FBGEMM_V1
- @register_model(name="quantized_shufflenet_v2_x0_5")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1
- if kwargs.get("quantize", False)
- else ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
- )
- )
- def shufflenet_v2_x0_5(
- *,
- weights: Optional[Union[ShuffleNet_V2_X0_5_QuantizedWeights, ShuffleNet_V2_X0_5_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableShuffleNetV2:
- """
- Constructs a ShuffleNetV2 with 0.5x output channels, as described in
- `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
- <https://arxiv.org/abs/1807.11164>`__.
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr.
- Default is True.
- quantize (bool, optional): If True, return a quantized version of the model.
- Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights
- :members:
- :noindex:
- """
- weights = (ShuffleNet_V2_X0_5_QuantizedWeights if quantize else ShuffleNet_V2_X0_5_Weights).verify(weights)
- return _shufflenetv2(
- [4, 8, 4], [24, 48, 96, 192, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
- )
- @register_model(name="quantized_shufflenet_v2_x1_0")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1
- if kwargs.get("quantize", False)
- else ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
- )
- )
- def shufflenet_v2_x1_0(
- *,
- weights: Optional[Union[ShuffleNet_V2_X1_0_QuantizedWeights, ShuffleNet_V2_X1_0_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableShuffleNetV2:
- """
- Constructs a ShuffleNetV2 with 1.0x output channels, as described in
- `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
- <https://arxiv.org/abs/1807.11164>`__.
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr.
- Default is True.
- quantize (bool, optional): If True, return a quantized version of the model.
- Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights
- :members:
- :noindex:
- """
- weights = (ShuffleNet_V2_X1_0_QuantizedWeights if quantize else ShuffleNet_V2_X1_0_Weights).verify(weights)
- return _shufflenetv2(
- [4, 8, 4], [24, 116, 232, 464, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
- )
- @register_model(name="quantized_shufflenet_v2_x1_5")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: ShuffleNet_V2_X1_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1
- if kwargs.get("quantize", False)
- else ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1,
- )
- )
- def shufflenet_v2_x1_5(
- *,
- weights: Optional[Union[ShuffleNet_V2_X1_5_QuantizedWeights, ShuffleNet_V2_X1_5_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableShuffleNetV2:
- """
- Constructs a ShuffleNetV2 with 1.5x output channels, as described in
- `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
- <https://arxiv.org/abs/1807.11164>`__.
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr.
- Default is True.
- quantize (bool, optional): If True, return a quantized version of the model.
- Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights
- :members:
- :noindex:
- """
- weights = (ShuffleNet_V2_X1_5_QuantizedWeights if quantize else ShuffleNet_V2_X1_5_Weights).verify(weights)
- return _shufflenetv2(
- [4, 8, 4], [24, 176, 352, 704, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
- )
- @register_model(name="quantized_shufflenet_v2_x2_0")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: ShuffleNet_V2_X2_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1
- if kwargs.get("quantize", False)
- else ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1,
- )
- )
- def shufflenet_v2_x2_0(
- *,
- weights: Optional[Union[ShuffleNet_V2_X2_0_QuantizedWeights, ShuffleNet_V2_X2_0_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableShuffleNetV2:
- """
- Constructs a ShuffleNetV2 with 2.0x output channels, as described in
- `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
- <https://arxiv.org/abs/1807.11164>`__.
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr.
- Default is True.
- quantize (bool, optional): If True, return a quantized version of the model.
- Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights
- :members:
- :noindex:
- """
- weights = (ShuffleNet_V2_X2_0_QuantizedWeights if quantize else ShuffleNet_V2_X2_0_Weights).verify(weights)
- return _shufflenetv2(
- [4, 8, 4], [24, 244, 488, 976, 2048], weights=weights, progress=progress, quantize=quantize, **kwargs
- )
|