123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484 |
- from functools import partial
- from typing import Any, List, Optional, Type, Union
- import torch
- import torch.nn as nn
- from torch import Tensor
- from torchvision.models.resnet import (
- BasicBlock,
- Bottleneck,
- ResNet,
- ResNet18_Weights,
- ResNet50_Weights,
- ResNeXt101_32X8D_Weights,
- ResNeXt101_64X4D_Weights,
- )
- from ...transforms._presets import ImageClassification
- from .._api import register_model, Weights, WeightsEnum
- from .._meta import _IMAGENET_CATEGORIES
- from .._utils import _ovewrite_named_param, handle_legacy_interface
- from .utils import _fuse_modules, _replace_relu, quantize_model
- __all__ = [
- "QuantizableResNet",
- "ResNet18_QuantizedWeights",
- "ResNet50_QuantizedWeights",
- "ResNeXt101_32X8D_QuantizedWeights",
- "ResNeXt101_64X4D_QuantizedWeights",
- "resnet18",
- "resnet50",
- "resnext101_32x8d",
- "resnext101_64x4d",
- ]
- class QuantizableBasicBlock(BasicBlock):
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, **kwargs)
- self.add_relu = torch.nn.quantized.FloatFunctional()
- def forward(self, x: Tensor) -> Tensor:
- identity = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample is not None:
- identity = self.downsample(x)
- out = self.add_relu.add_relu(out, identity)
- return out
- def fuse_model(self, is_qat: Optional[bool] = None) -> None:
- _fuse_modules(self, [["conv1", "bn1", "relu"], ["conv2", "bn2"]], is_qat, inplace=True)
- if self.downsample:
- _fuse_modules(self.downsample, ["0", "1"], is_qat, inplace=True)
- class QuantizableBottleneck(Bottleneck):
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, **kwargs)
- self.skip_add_relu = nn.quantized.FloatFunctional()
- self.relu1 = nn.ReLU(inplace=False)
- self.relu2 = nn.ReLU(inplace=False)
- def forward(self, x: Tensor) -> Tensor:
- identity = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu1(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu2(out)
- out = self.conv3(out)
- out = self.bn3(out)
- if self.downsample is not None:
- identity = self.downsample(x)
- out = self.skip_add_relu.add_relu(out, identity)
- return out
- def fuse_model(self, is_qat: Optional[bool] = None) -> None:
- _fuse_modules(
- self, [["conv1", "bn1", "relu1"], ["conv2", "bn2", "relu2"], ["conv3", "bn3"]], is_qat, inplace=True
- )
- if self.downsample:
- _fuse_modules(self.downsample, ["0", "1"], is_qat, inplace=True)
- class QuantizableResNet(ResNet):
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, **kwargs)
- self.quant = torch.ao.quantization.QuantStub()
- self.dequant = torch.ao.quantization.DeQuantStub()
- def forward(self, x: Tensor) -> Tensor:
- x = self.quant(x)
- # Ensure scriptability
- # super(QuantizableResNet,self).forward(x)
- # is not scriptable
- x = self._forward_impl(x)
- x = self.dequant(x)
- return x
- def fuse_model(self, is_qat: Optional[bool] = None) -> None:
- r"""Fuse conv/bn/relu modules in resnet models
- Fuse conv+bn+relu/ Conv+relu/conv+Bn modules to prepare for quantization.
- Model is modified in place. Note that this operation does not change numerics
- and the model after modification is in floating point
- """
- _fuse_modules(self, ["conv1", "bn1", "relu"], is_qat, inplace=True)
- for m in self.modules():
- if type(m) is QuantizableBottleneck or type(m) is QuantizableBasicBlock:
- m.fuse_model(is_qat)
- def _resnet(
- block: Type[Union[QuantizableBasicBlock, QuantizableBottleneck]],
- layers: List[int],
- weights: Optional[WeightsEnum],
- progress: bool,
- quantize: bool,
- **kwargs: Any,
- ) -> QuantizableResNet:
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- if "backend" in weights.meta:
- _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
- backend = kwargs.pop("backend", "fbgemm")
- model = QuantizableResNet(block, layers, **kwargs)
- _replace_relu(model)
- if quantize:
- quantize_model(model, backend)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
- _COMMON_META = {
- "min_size": (1, 1),
- "categories": _IMAGENET_CATEGORIES,
- "backend": "fbgemm",
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
- "_docs": """
- These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized
- weights listed below.
- """,
- }
- class ResNet18_QuantizedWeights(WeightsEnum):
- IMAGENET1K_FBGEMM_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/resnet18_fbgemm_16fa66dd.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 11689512,
- "unquantized": ResNet18_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 69.494,
- "acc@5": 88.882,
- }
- },
- "_ops": 1.814,
- "_file_size": 11.238,
- },
- )
- DEFAULT = IMAGENET1K_FBGEMM_V1
- class ResNet50_QuantizedWeights(WeightsEnum):
- IMAGENET1K_FBGEMM_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/resnet50_fbgemm_bf931d71.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 25557032,
- "unquantized": ResNet50_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 75.920,
- "acc@5": 92.814,
- }
- },
- "_ops": 4.089,
- "_file_size": 24.759,
- },
- )
- IMAGENET1K_FBGEMM_V2 = Weights(
- url="https://download.pytorch.org/models/quantized/resnet50_fbgemm-23753f79.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 25557032,
- "unquantized": ResNet50_Weights.IMAGENET1K_V2,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 80.282,
- "acc@5": 94.976,
- }
- },
- "_ops": 4.089,
- "_file_size": 24.953,
- },
- )
- DEFAULT = IMAGENET1K_FBGEMM_V2
- class ResNeXt101_32X8D_QuantizedWeights(WeightsEnum):
- IMAGENET1K_FBGEMM_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm_09835ccf.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 88791336,
- "unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 78.986,
- "acc@5": 94.480,
- }
- },
- "_ops": 16.414,
- "_file_size": 86.034,
- },
- )
- IMAGENET1K_FBGEMM_V2 = Weights(
- url="https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm-ee16d00c.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 88791336,
- "unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V2,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 82.574,
- "acc@5": 96.132,
- }
- },
- "_ops": 16.414,
- "_file_size": 86.645,
- },
- )
- DEFAULT = IMAGENET1K_FBGEMM_V2
- class ResNeXt101_64X4D_QuantizedWeights(WeightsEnum):
- IMAGENET1K_FBGEMM_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/resnext101_64x4d_fbgemm-605a1cb3.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 83455272,
- "recipe": "https://github.com/pytorch/vision/pull/5935",
- "unquantized": ResNeXt101_64X4D_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 82.898,
- "acc@5": 96.326,
- }
- },
- "_ops": 15.46,
- "_file_size": 81.556,
- },
- )
- DEFAULT = IMAGENET1K_FBGEMM_V1
- @register_model(name="quantized_resnet18")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: ResNet18_QuantizedWeights.IMAGENET1K_FBGEMM_V1
- if kwargs.get("quantize", False)
- else ResNet18_Weights.IMAGENET1K_V1,
- )
- )
- def resnet18(
- *,
- weights: Optional[Union[ResNet18_QuantizedWeights, ResNet18_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableResNet:
- """ResNet-18 model from
- `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`_
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.ResNet18_QuantizedWeights` or :class:`~torchvision.models.ResNet18_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.quantization.ResNet18_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- quantize (bool, optional): If True, return a quantized version of the model. Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.ResNet18_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.ResNet18_Weights
- :members:
- :noindex:
- """
- weights = (ResNet18_QuantizedWeights if quantize else ResNet18_Weights).verify(weights)
- return _resnet(QuantizableBasicBlock, [2, 2, 2, 2], weights, progress, quantize, **kwargs)
- @register_model(name="quantized_resnet50")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1
- if kwargs.get("quantize", False)
- else ResNet50_Weights.IMAGENET1K_V1,
- )
- )
- def resnet50(
- *,
- weights: Optional[Union[ResNet50_QuantizedWeights, ResNet50_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableResNet:
- """ResNet-50 model from
- `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`_
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.ResNet50_QuantizedWeights` or :class:`~torchvision.models.ResNet50_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.quantization.ResNet50_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- quantize (bool, optional): If True, return a quantized version of the model. Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.ResNet50_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.ResNet50_Weights
- :members:
- :noindex:
- """
- weights = (ResNet50_QuantizedWeights if quantize else ResNet50_Weights).verify(weights)
- return _resnet(QuantizableBottleneck, [3, 4, 6, 3], weights, progress, quantize, **kwargs)
- @register_model(name="quantized_resnext101_32x8d")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: ResNeXt101_32X8D_QuantizedWeights.IMAGENET1K_FBGEMM_V1
- if kwargs.get("quantize", False)
- else ResNeXt101_32X8D_Weights.IMAGENET1K_V1,
- )
- )
- def resnext101_32x8d(
- *,
- weights: Optional[Union[ResNeXt101_32X8D_QuantizedWeights, ResNeXt101_32X8D_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableResNet:
- """ResNeXt-101 32x8d model from
- `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.ResNeXt101_32X8D_QuantizedWeights` or :class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.quantization.ResNet101_32X8D_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- quantize (bool, optional): If True, return a quantized version of the model. Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.ResNeXt101_32X8D_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights
- :members:
- :noindex:
- """
- weights = (ResNeXt101_32X8D_QuantizedWeights if quantize else ResNeXt101_32X8D_Weights).verify(weights)
- _ovewrite_named_param(kwargs, "groups", 32)
- _ovewrite_named_param(kwargs, "width_per_group", 8)
- return _resnet(QuantizableBottleneck, [3, 4, 23, 3], weights, progress, quantize, **kwargs)
- @register_model(name="quantized_resnext101_64x4d")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: ResNeXt101_64X4D_QuantizedWeights.IMAGENET1K_FBGEMM_V1
- if kwargs.get("quantize", False)
- else ResNeXt101_64X4D_Weights.IMAGENET1K_V1,
- )
- )
- def resnext101_64x4d(
- *,
- weights: Optional[Union[ResNeXt101_64X4D_QuantizedWeights, ResNeXt101_64X4D_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableResNet:
- """ResNeXt-101 64x4d model from
- `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.ResNeXt101_64X4D_QuantizedWeights` or :class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.quantization.ResNet101_64X4D_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- quantize (bool, optional): If True, return a quantized version of the model. Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableResNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/resnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.ResNeXt101_64X4D_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights
- :members:
- :noindex:
- """
- weights = (ResNeXt101_64X4D_QuantizedWeights if quantize else ResNeXt101_64X4D_Weights).verify(weights)
- _ovewrite_named_param(kwargs, "groups", 64)
- _ovewrite_named_param(kwargs, "width_per_group", 4)
- return _resnet(QuantizableBottleneck, [3, 4, 23, 3], weights, progress, quantize, **kwargs)
|