123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- from functools import partial
- from typing import Any, Optional, Union
- from torch import nn, Tensor
- from torch.ao.quantization import DeQuantStub, QuantStub
- from torchvision.models.mobilenetv2 import InvertedResidual, MobileNet_V2_Weights, MobileNetV2
- from ...ops.misc import Conv2dNormActivation
- from ...transforms._presets import ImageClassification
- from .._api import register_model, Weights, WeightsEnum
- from .._meta import _IMAGENET_CATEGORIES
- from .._utils import _ovewrite_named_param, handle_legacy_interface
- from .utils import _fuse_modules, _replace_relu, quantize_model
- __all__ = [
- "QuantizableMobileNetV2",
- "MobileNet_V2_QuantizedWeights",
- "mobilenet_v2",
- ]
- class QuantizableInvertedResidual(InvertedResidual):
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, **kwargs)
- self.skip_add = nn.quantized.FloatFunctional()
- def forward(self, x: Tensor) -> Tensor:
- if self.use_res_connect:
- return self.skip_add.add(x, self.conv(x))
- else:
- return self.conv(x)
- def fuse_model(self, is_qat: Optional[bool] = None) -> None:
- for idx in range(len(self.conv)):
- if type(self.conv[idx]) is nn.Conv2d:
- _fuse_modules(self.conv, [str(idx), str(idx + 1)], is_qat, inplace=True)
- class QuantizableMobileNetV2(MobileNetV2):
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- """
- MobileNet V2 main class
- Args:
- Inherits args from floating point MobileNetV2
- """
- super().__init__(*args, **kwargs)
- self.quant = QuantStub()
- self.dequant = DeQuantStub()
- def forward(self, x: Tensor) -> Tensor:
- x = self.quant(x)
- x = self._forward_impl(x)
- x = self.dequant(x)
- return x
- def fuse_model(self, is_qat: Optional[bool] = None) -> None:
- for m in self.modules():
- if type(m) is Conv2dNormActivation:
- _fuse_modules(m, ["0", "1", "2"], is_qat, inplace=True)
- if type(m) is QuantizableInvertedResidual:
- m.fuse_model(is_qat)
- class MobileNet_V2_QuantizedWeights(WeightsEnum):
- IMAGENET1K_QNNPACK_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- "num_params": 3504872,
- "min_size": (1, 1),
- "categories": _IMAGENET_CATEGORIES,
- "backend": "qnnpack",
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2",
- "unquantized": MobileNet_V2_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 71.658,
- "acc@5": 90.150,
- }
- },
- "_ops": 0.301,
- "_file_size": 3.423,
- "_docs": """
- These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
- weights listed below.
- """,
- },
- )
- DEFAULT = IMAGENET1K_QNNPACK_V1
- @register_model(name="quantized_mobilenet_v2")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1
- if kwargs.get("quantize", False)
- else MobileNet_V2_Weights.IMAGENET1K_V1,
- )
- )
- def mobilenet_v2(
- *,
- weights: Optional[Union[MobileNet_V2_QuantizedWeights, MobileNet_V2_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableMobileNetV2:
- """
- Constructs a MobileNetV2 architecture from
- `MobileNetV2: Inverted Residuals and Linear Bottlenecks
- <https://arxiv.org/abs/1801.04381>`_.
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
- quantize (bool, optional): If True, returns a quantized version of the model. Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableMobileNetV2``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.MobileNet_V2_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.MobileNet_V2_Weights
- :members:
- :noindex:
- """
- weights = (MobileNet_V2_QuantizedWeights if quantize else MobileNet_V2_Weights).verify(weights)
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- if "backend" in weights.meta:
- _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
- backend = kwargs.pop("backend", "qnnpack")
- model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs)
- _replace_relu(model)
- if quantize:
- quantize_model(model, backend)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
|