123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- import warnings
- from functools import partial
- from typing import Any, List, Optional, Union
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch import Tensor
- from torchvision.models import inception as inception_module
- from torchvision.models.inception import Inception_V3_Weights, InceptionOutputs
- from ...transforms._presets import ImageClassification
- from .._api import register_model, Weights, WeightsEnum
- from .._meta import _IMAGENET_CATEGORIES
- from .._utils import _ovewrite_named_param, handle_legacy_interface
- from .utils import _fuse_modules, _replace_relu, quantize_model
- __all__ = [
- "QuantizableInception3",
- "Inception_V3_QuantizedWeights",
- "inception_v3",
- ]
- class QuantizableBasicConv2d(inception_module.BasicConv2d):
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, **kwargs)
- self.relu = nn.ReLU()
- def forward(self, x: Tensor) -> Tensor:
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
- return x
- def fuse_model(self, is_qat: Optional[bool] = None) -> None:
- _fuse_modules(self, ["conv", "bn", "relu"], is_qat, inplace=True)
- class QuantizableInceptionA(inception_module.InceptionA):
- # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc]
- self.myop = nn.quantized.FloatFunctional()
- def forward(self, x: Tensor) -> Tensor:
- outputs = self._forward(x)
- return self.myop.cat(outputs, 1)
- class QuantizableInceptionB(inception_module.InceptionB):
- # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc]
- self.myop = nn.quantized.FloatFunctional()
- def forward(self, x: Tensor) -> Tensor:
- outputs = self._forward(x)
- return self.myop.cat(outputs, 1)
- class QuantizableInceptionC(inception_module.InceptionC):
- # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc]
- self.myop = nn.quantized.FloatFunctional()
- def forward(self, x: Tensor) -> Tensor:
- outputs = self._forward(x)
- return self.myop.cat(outputs, 1)
- class QuantizableInceptionD(inception_module.InceptionD):
- # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc]
- self.myop = nn.quantized.FloatFunctional()
- def forward(self, x: Tensor) -> Tensor:
- outputs = self._forward(x)
- return self.myop.cat(outputs, 1)
- class QuantizableInceptionE(inception_module.InceptionE):
- # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc]
- self.myop1 = nn.quantized.FloatFunctional()
- self.myop2 = nn.quantized.FloatFunctional()
- self.myop3 = nn.quantized.FloatFunctional()
- def _forward(self, x: Tensor) -> List[Tensor]:
- branch1x1 = self.branch1x1(x)
- branch3x3 = self.branch3x3_1(x)
- branch3x3 = [self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3)]
- branch3x3 = self.myop1.cat(branch3x3, 1)
- branch3x3dbl = self.branch3x3dbl_1(x)
- branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
- branch3x3dbl = [
- self.branch3x3dbl_3a(branch3x3dbl),
- self.branch3x3dbl_3b(branch3x3dbl),
- ]
- branch3x3dbl = self.myop2.cat(branch3x3dbl, 1)
- branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
- branch_pool = self.branch_pool(branch_pool)
- outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
- return outputs
- def forward(self, x: Tensor) -> Tensor:
- outputs = self._forward(x)
- return self.myop3.cat(outputs, 1)
- class QuantizableInceptionAux(inception_module.InceptionAux):
- # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc]
- class QuantizableInception3(inception_module.Inception3):
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__( # type: ignore[misc]
- *args,
- inception_blocks=[
- QuantizableBasicConv2d,
- QuantizableInceptionA,
- QuantizableInceptionB,
- QuantizableInceptionC,
- QuantizableInceptionD,
- QuantizableInceptionE,
- QuantizableInceptionAux,
- ],
- **kwargs,
- )
- self.quant = torch.ao.quantization.QuantStub()
- self.dequant = torch.ao.quantization.DeQuantStub()
- def forward(self, x: Tensor) -> InceptionOutputs:
- x = self._transform_input(x)
- x = self.quant(x)
- x, aux = self._forward(x)
- x = self.dequant(x)
- aux_defined = self.training and self.aux_logits
- if torch.jit.is_scripting():
- if not aux_defined:
- warnings.warn("Scripted QuantizableInception3 always returns QuantizableInception3 Tuple")
- return InceptionOutputs(x, aux)
- else:
- return self.eager_outputs(x, aux)
- def fuse_model(self, is_qat: Optional[bool] = None) -> None:
- r"""Fuse conv/bn/relu modules in inception model
- Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
- Model is modified in place. Note that this operation does not change numerics
- and the model after modification is in floating point
- """
- for m in self.modules():
- if type(m) is QuantizableBasicConv2d:
- m.fuse_model(is_qat)
- class Inception_V3_QuantizedWeights(WeightsEnum):
- IMAGENET1K_FBGEMM_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/inception_v3_google_fbgemm-a2837893.pth",
- transforms=partial(ImageClassification, crop_size=299, resize_size=342),
- meta={
- "num_params": 27161264,
- "min_size": (75, 75),
- "categories": _IMAGENET_CATEGORIES,
- "backend": "fbgemm",
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
- "unquantized": Inception_V3_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 77.176,
- "acc@5": 93.354,
- }
- },
- "_ops": 5.713,
- "_file_size": 23.146,
- "_docs": """
- These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized
- weights listed below.
- """,
- },
- )
- DEFAULT = IMAGENET1K_FBGEMM_V1
- @register_model(name="quantized_inception_v3")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: Inception_V3_QuantizedWeights.IMAGENET1K_FBGEMM_V1
- if kwargs.get("quantize", False)
- else Inception_V3_Weights.IMAGENET1K_V1,
- )
- )
- def inception_v3(
- *,
- weights: Optional[Union[Inception_V3_QuantizedWeights, Inception_V3_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableInception3:
- r"""Inception v3 model architecture from
- `Rethinking the Inception Architecture for Computer Vision <http://arxiv.org/abs/1512.00567>`__.
- .. note::
- **Important**: In contrast to the other models the inception_v3 expects tensors with a size of
- N x 3 x 299 x 299, so ensure your images are sized accordingly.
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.Inception_V3_QuantizedWeights` or :class:`~torchvision.models.Inception_V3_Weights`, optional): The pretrained
- weights for the model. See
- :class:`~torchvision.models.quantization.Inception_V3_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr.
- Default is True.
- quantize (bool, optional): If True, return a quantized version of the model.
- Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableInception3``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/inception.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.Inception_V3_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.Inception_V3_Weights
- :members:
- :noindex:
- """
- weights = (Inception_V3_QuantizedWeights if quantize else Inception_V3_Weights).verify(weights)
- original_aux_logits = kwargs.get("aux_logits", False)
- if weights is not None:
- if "transform_input" not in kwargs:
- _ovewrite_named_param(kwargs, "transform_input", True)
- _ovewrite_named_param(kwargs, "aux_logits", True)
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- if "backend" in weights.meta:
- _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
- backend = kwargs.pop("backend", "fbgemm")
- model = QuantizableInception3(**kwargs)
- _replace_relu(model)
- if quantize:
- quantize_model(model, backend)
- if weights is not None:
- if quantize and not original_aux_logits:
- model.aux_logits = False
- model.AuxLogits = None
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- if not quantize and not original_aux_logits:
- model.aux_logits = False
- model.AuxLogits = None
- return model
|