123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- import warnings
- from functools import partial
- from typing import Any, Optional, Union
- import torch
- import torch.nn as nn
- from torch import Tensor
- from torch.nn import functional as F
- from ...transforms._presets import ImageClassification
- from .._api import register_model, Weights, WeightsEnum
- from .._meta import _IMAGENET_CATEGORIES
- from .._utils import _ovewrite_named_param, handle_legacy_interface
- from ..googlenet import BasicConv2d, GoogLeNet, GoogLeNet_Weights, GoogLeNetOutputs, Inception, InceptionAux
- from .utils import _fuse_modules, _replace_relu, quantize_model
- __all__ = [
- "QuantizableGoogLeNet",
- "GoogLeNet_QuantizedWeights",
- "googlenet",
- ]
- class QuantizableBasicConv2d(BasicConv2d):
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, **kwargs)
- self.relu = nn.ReLU()
- def forward(self, x: Tensor) -> Tensor:
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
- return x
- def fuse_model(self, is_qat: Optional[bool] = None) -> None:
- _fuse_modules(self, ["conv", "bn", "relu"], is_qat, inplace=True)
- class QuantizableInception(Inception):
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc]
- self.cat = nn.quantized.FloatFunctional()
- def forward(self, x: Tensor) -> Tensor:
- outputs = self._forward(x)
- return self.cat.cat(outputs, 1)
- class QuantizableInceptionAux(InceptionAux):
- # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc]
- self.relu = nn.ReLU()
- def forward(self, x: Tensor) -> Tensor:
- # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
- x = F.adaptive_avg_pool2d(x, (4, 4))
- # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
- x = self.conv(x)
- # N x 128 x 4 x 4
- x = torch.flatten(x, 1)
- # N x 2048
- x = self.relu(self.fc1(x))
- # N x 1024
- x = self.dropout(x)
- # N x 1024
- x = self.fc2(x)
- # N x 1000 (num_classes)
- return x
- class QuantizableGoogLeNet(GoogLeNet):
- # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
- def __init__(self, *args: Any, **kwargs: Any) -> None:
- super().__init__( # type: ignore[misc]
- *args, blocks=[QuantizableBasicConv2d, QuantizableInception, QuantizableInceptionAux], **kwargs
- )
- self.quant = torch.ao.quantization.QuantStub()
- self.dequant = torch.ao.quantization.DeQuantStub()
- def forward(self, x: Tensor) -> GoogLeNetOutputs:
- x = self._transform_input(x)
- x = self.quant(x)
- x, aux1, aux2 = self._forward(x)
- x = self.dequant(x)
- aux_defined = self.training and self.aux_logits
- if torch.jit.is_scripting():
- if not aux_defined:
- warnings.warn("Scripted QuantizableGoogleNet always returns GoogleNetOutputs Tuple")
- return GoogLeNetOutputs(x, aux2, aux1)
- else:
- return self.eager_outputs(x, aux2, aux1)
- def fuse_model(self, is_qat: Optional[bool] = None) -> None:
- r"""Fuse conv/bn/relu modules in googlenet model
- Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
- Model is modified in place. Note that this operation does not change numerics
- and the model after modification is in floating point
- """
- for m in self.modules():
- if type(m) is QuantizableBasicConv2d:
- m.fuse_model(is_qat)
- class GoogLeNet_QuantizedWeights(WeightsEnum):
- IMAGENET1K_FBGEMM_V1 = Weights(
- url="https://download.pytorch.org/models/quantized/googlenet_fbgemm-c81f6644.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- "num_params": 6624904,
- "min_size": (15, 15),
- "categories": _IMAGENET_CATEGORIES,
- "backend": "fbgemm",
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
- "unquantized": GoogLeNet_Weights.IMAGENET1K_V1,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 69.826,
- "acc@5": 89.404,
- }
- },
- "_ops": 1.498,
- "_file_size": 12.618,
- "_docs": """
- These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized
- weights listed below.
- """,
- },
- )
- DEFAULT = IMAGENET1K_FBGEMM_V1
- @register_model(name="quantized_googlenet")
- @handle_legacy_interface(
- weights=(
- "pretrained",
- lambda kwargs: GoogLeNet_QuantizedWeights.IMAGENET1K_FBGEMM_V1
- if kwargs.get("quantize", False)
- else GoogLeNet_Weights.IMAGENET1K_V1,
- )
- )
- def googlenet(
- *,
- weights: Optional[Union[GoogLeNet_QuantizedWeights, GoogLeNet_Weights]] = None,
- progress: bool = True,
- quantize: bool = False,
- **kwargs: Any,
- ) -> QuantizableGoogLeNet:
- """GoogLeNet (Inception v1) model architecture from `Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`__.
- .. note::
- Note that ``quantize = True`` returns a quantized model with 8 bit
- weights. Quantized models only support inference and run on CPUs.
- GPU inference is not yet supported.
- Args:
- weights (:class:`~torchvision.models.quantization.GoogLeNet_QuantizedWeights` or :class:`~torchvision.models.GoogLeNet_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.quantization.GoogLeNet_QuantizedWeights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- quantize (bool, optional): If True, return a quantized version of the model. Default is False.
- **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableGoogLeNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/googlenet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.quantization.GoogLeNet_QuantizedWeights
- :members:
- .. autoclass:: torchvision.models.GoogLeNet_Weights
- :members:
- :noindex:
- """
- weights = (GoogLeNet_QuantizedWeights if quantize else GoogLeNet_Weights).verify(weights)
- original_aux_logits = kwargs.get("aux_logits", False)
- if weights is not None:
- if "transform_input" not in kwargs:
- _ovewrite_named_param(kwargs, "transform_input", True)
- _ovewrite_named_param(kwargs, "aux_logits", True)
- _ovewrite_named_param(kwargs, "init_weights", False)
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- if "backend" in weights.meta:
- _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
- backend = kwargs.pop("backend", "fbgemm")
- model = QuantizableGoogLeNet(**kwargs)
- _replace_relu(model)
- if quantize:
- quantize_model(model, backend)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- if not original_aux_logits:
- model.aux_logits = False
- model.aux1 = None # type: ignore[assignment]
- model.aux2 = None # type: ignore[assignment]
- else:
- warnings.warn(
- "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them"
- )
- return model
|