mobilenetv3.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423
  1. from functools import partial
  2. from typing import Any, Callable, List, Optional, Sequence
  3. import torch
  4. from torch import nn, Tensor
  5. from ..ops.misc import Conv2dNormActivation, SqueezeExcitation as SElayer
  6. from ..transforms._presets import ImageClassification
  7. from ..utils import _log_api_usage_once
  8. from ._api import register_model, Weights, WeightsEnum
  9. from ._meta import _IMAGENET_CATEGORIES
  10. from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface
  11. __all__ = [
  12. "MobileNetV3",
  13. "MobileNet_V3_Large_Weights",
  14. "MobileNet_V3_Small_Weights",
  15. "mobilenet_v3_large",
  16. "mobilenet_v3_small",
  17. ]
  18. class InvertedResidualConfig:
  19. # Stores information listed at Tables 1 and 2 of the MobileNetV3 paper
  20. def __init__(
  21. self,
  22. input_channels: int,
  23. kernel: int,
  24. expanded_channels: int,
  25. out_channels: int,
  26. use_se: bool,
  27. activation: str,
  28. stride: int,
  29. dilation: int,
  30. width_mult: float,
  31. ):
  32. self.input_channels = self.adjust_channels(input_channels, width_mult)
  33. self.kernel = kernel
  34. self.expanded_channels = self.adjust_channels(expanded_channels, width_mult)
  35. self.out_channels = self.adjust_channels(out_channels, width_mult)
  36. self.use_se = use_se
  37. self.use_hs = activation == "HS"
  38. self.stride = stride
  39. self.dilation = dilation
  40. @staticmethod
  41. def adjust_channels(channels: int, width_mult: float):
  42. return _make_divisible(channels * width_mult, 8)
  43. class InvertedResidual(nn.Module):
  44. # Implemented as described at section 5 of MobileNetV3 paper
  45. def __init__(
  46. self,
  47. cnf: InvertedResidualConfig,
  48. norm_layer: Callable[..., nn.Module],
  49. se_layer: Callable[..., nn.Module] = partial(SElayer, scale_activation=nn.Hardsigmoid),
  50. ):
  51. super().__init__()
  52. if not (1 <= cnf.stride <= 2):
  53. raise ValueError("illegal stride value")
  54. self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels
  55. layers: List[nn.Module] = []
  56. activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU
  57. # expand
  58. if cnf.expanded_channels != cnf.input_channels:
  59. layers.append(
  60. Conv2dNormActivation(
  61. cnf.input_channels,
  62. cnf.expanded_channels,
  63. kernel_size=1,
  64. norm_layer=norm_layer,
  65. activation_layer=activation_layer,
  66. )
  67. )
  68. # depthwise
  69. stride = 1 if cnf.dilation > 1 else cnf.stride
  70. layers.append(
  71. Conv2dNormActivation(
  72. cnf.expanded_channels,
  73. cnf.expanded_channels,
  74. kernel_size=cnf.kernel,
  75. stride=stride,
  76. dilation=cnf.dilation,
  77. groups=cnf.expanded_channels,
  78. norm_layer=norm_layer,
  79. activation_layer=activation_layer,
  80. )
  81. )
  82. if cnf.use_se:
  83. squeeze_channels = _make_divisible(cnf.expanded_channels // 4, 8)
  84. layers.append(se_layer(cnf.expanded_channels, squeeze_channels))
  85. # project
  86. layers.append(
  87. Conv2dNormActivation(
  88. cnf.expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
  89. )
  90. )
  91. self.block = nn.Sequential(*layers)
  92. self.out_channels = cnf.out_channels
  93. self._is_cn = cnf.stride > 1
  94. def forward(self, input: Tensor) -> Tensor:
  95. result = self.block(input)
  96. if self.use_res_connect:
  97. result += input
  98. return result
  99. class MobileNetV3(nn.Module):
  100. def __init__(
  101. self,
  102. inverted_residual_setting: List[InvertedResidualConfig],
  103. last_channel: int,
  104. num_classes: int = 1000,
  105. block: Optional[Callable[..., nn.Module]] = None,
  106. norm_layer: Optional[Callable[..., nn.Module]] = None,
  107. dropout: float = 0.2,
  108. **kwargs: Any,
  109. ) -> None:
  110. """
  111. MobileNet V3 main class
  112. Args:
  113. inverted_residual_setting (List[InvertedResidualConfig]): Network structure
  114. last_channel (int): The number of channels on the penultimate layer
  115. num_classes (int): Number of classes
  116. block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for mobilenet
  117. norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
  118. dropout (float): The droupout probability
  119. """
  120. super().__init__()
  121. _log_api_usage_once(self)
  122. if not inverted_residual_setting:
  123. raise ValueError("The inverted_residual_setting should not be empty")
  124. elif not (
  125. isinstance(inverted_residual_setting, Sequence)
  126. and all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])
  127. ):
  128. raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")
  129. if block is None:
  130. block = InvertedResidual
  131. if norm_layer is None:
  132. norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)
  133. layers: List[nn.Module] = []
  134. # building first layer
  135. firstconv_output_channels = inverted_residual_setting[0].input_channels
  136. layers.append(
  137. Conv2dNormActivation(
  138. 3,
  139. firstconv_output_channels,
  140. kernel_size=3,
  141. stride=2,
  142. norm_layer=norm_layer,
  143. activation_layer=nn.Hardswish,
  144. )
  145. )
  146. # building inverted residual blocks
  147. for cnf in inverted_residual_setting:
  148. layers.append(block(cnf, norm_layer))
  149. # building last several layers
  150. lastconv_input_channels = inverted_residual_setting[-1].out_channels
  151. lastconv_output_channels = 6 * lastconv_input_channels
  152. layers.append(
  153. Conv2dNormActivation(
  154. lastconv_input_channels,
  155. lastconv_output_channels,
  156. kernel_size=1,
  157. norm_layer=norm_layer,
  158. activation_layer=nn.Hardswish,
  159. )
  160. )
  161. self.features = nn.Sequential(*layers)
  162. self.avgpool = nn.AdaptiveAvgPool2d(1)
  163. self.classifier = nn.Sequential(
  164. nn.Linear(lastconv_output_channels, last_channel),
  165. nn.Hardswish(inplace=True),
  166. nn.Dropout(p=dropout, inplace=True),
  167. nn.Linear(last_channel, num_classes),
  168. )
  169. for m in self.modules():
  170. if isinstance(m, nn.Conv2d):
  171. nn.init.kaiming_normal_(m.weight, mode="fan_out")
  172. if m.bias is not None:
  173. nn.init.zeros_(m.bias)
  174. elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
  175. nn.init.ones_(m.weight)
  176. nn.init.zeros_(m.bias)
  177. elif isinstance(m, nn.Linear):
  178. nn.init.normal_(m.weight, 0, 0.01)
  179. nn.init.zeros_(m.bias)
  180. def _forward_impl(self, x: Tensor) -> Tensor:
  181. x = self.features(x)
  182. x = self.avgpool(x)
  183. x = torch.flatten(x, 1)
  184. x = self.classifier(x)
  185. return x
  186. def forward(self, x: Tensor) -> Tensor:
  187. return self._forward_impl(x)
  188. def _mobilenet_v3_conf(
  189. arch: str, width_mult: float = 1.0, reduced_tail: bool = False, dilated: bool = False, **kwargs: Any
  190. ):
  191. reduce_divider = 2 if reduced_tail else 1
  192. dilation = 2 if dilated else 1
  193. bneck_conf = partial(InvertedResidualConfig, width_mult=width_mult)
  194. adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_mult=width_mult)
  195. if arch == "mobilenet_v3_large":
  196. inverted_residual_setting = [
  197. bneck_conf(16, 3, 16, 16, False, "RE", 1, 1),
  198. bneck_conf(16, 3, 64, 24, False, "RE", 2, 1), # C1
  199. bneck_conf(24, 3, 72, 24, False, "RE", 1, 1),
  200. bneck_conf(24, 5, 72, 40, True, "RE", 2, 1), # C2
  201. bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
  202. bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
  203. bneck_conf(40, 3, 240, 80, False, "HS", 2, 1), # C3
  204. bneck_conf(80, 3, 200, 80, False, "HS", 1, 1),
  205. bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
  206. bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
  207. bneck_conf(80, 3, 480, 112, True, "HS", 1, 1),
  208. bneck_conf(112, 3, 672, 112, True, "HS", 1, 1),
  209. bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2, dilation), # C4
  210. bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
  211. bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
  212. ]
  213. last_channel = adjust_channels(1280 // reduce_divider) # C5
  214. elif arch == "mobilenet_v3_small":
  215. inverted_residual_setting = [
  216. bneck_conf(16, 3, 16, 16, True, "RE", 2, 1), # C1
  217. bneck_conf(16, 3, 72, 24, False, "RE", 2, 1), # C2
  218. bneck_conf(24, 3, 88, 24, False, "RE", 1, 1),
  219. bneck_conf(24, 5, 96, 40, True, "HS", 2, 1), # C3
  220. bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
  221. bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
  222. bneck_conf(40, 5, 120, 48, True, "HS", 1, 1),
  223. bneck_conf(48, 5, 144, 48, True, "HS", 1, 1),
  224. bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2, dilation), # C4
  225. bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
  226. bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
  227. ]
  228. last_channel = adjust_channels(1024 // reduce_divider) # C5
  229. else:
  230. raise ValueError(f"Unsupported model type {arch}")
  231. return inverted_residual_setting, last_channel
  232. def _mobilenet_v3(
  233. inverted_residual_setting: List[InvertedResidualConfig],
  234. last_channel: int,
  235. weights: Optional[WeightsEnum],
  236. progress: bool,
  237. **kwargs: Any,
  238. ) -> MobileNetV3:
  239. if weights is not None:
  240. _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
  241. model = MobileNetV3(inverted_residual_setting, last_channel, **kwargs)
  242. if weights is not None:
  243. model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
  244. return model
  245. _COMMON_META = {
  246. "min_size": (1, 1),
  247. "categories": _IMAGENET_CATEGORIES,
  248. }
  249. class MobileNet_V3_Large_Weights(WeightsEnum):
  250. IMAGENET1K_V1 = Weights(
  251. url="https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth",
  252. transforms=partial(ImageClassification, crop_size=224),
  253. meta={
  254. **_COMMON_META,
  255. "num_params": 5483032,
  256. "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small",
  257. "_metrics": {
  258. "ImageNet-1K": {
  259. "acc@1": 74.042,
  260. "acc@5": 91.340,
  261. }
  262. },
  263. "_ops": 0.217,
  264. "_file_size": 21.114,
  265. "_docs": """These weights were trained from scratch by using a simple training recipe.""",
  266. },
  267. )
  268. IMAGENET1K_V2 = Weights(
  269. url="https://download.pytorch.org/models/mobilenet_v3_large-5c1a4163.pth",
  270. transforms=partial(ImageClassification, crop_size=224, resize_size=232),
  271. meta={
  272. **_COMMON_META,
  273. "num_params": 5483032,
  274. "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning",
  275. "_metrics": {
  276. "ImageNet-1K": {
  277. "acc@1": 75.274,
  278. "acc@5": 92.566,
  279. }
  280. },
  281. "_ops": 0.217,
  282. "_file_size": 21.107,
  283. "_docs": """
  284. These weights improve marginally upon the results of the original paper by using a modified version of
  285. TorchVision's `new training recipe
  286. <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
  287. """,
  288. },
  289. )
  290. DEFAULT = IMAGENET1K_V2
  291. class MobileNet_V3_Small_Weights(WeightsEnum):
  292. IMAGENET1K_V1 = Weights(
  293. url="https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth",
  294. transforms=partial(ImageClassification, crop_size=224),
  295. meta={
  296. **_COMMON_META,
  297. "num_params": 2542856,
  298. "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small",
  299. "_metrics": {
  300. "ImageNet-1K": {
  301. "acc@1": 67.668,
  302. "acc@5": 87.402,
  303. }
  304. },
  305. "_ops": 0.057,
  306. "_file_size": 9.829,
  307. "_docs": """
  308. These weights improve upon the results of the original paper by using a simple training recipe.
  309. """,
  310. },
  311. )
  312. DEFAULT = IMAGENET1K_V1
  313. @register_model()
  314. @handle_legacy_interface(weights=("pretrained", MobileNet_V3_Large_Weights.IMAGENET1K_V1))
  315. def mobilenet_v3_large(
  316. *, weights: Optional[MobileNet_V3_Large_Weights] = None, progress: bool = True, **kwargs: Any
  317. ) -> MobileNetV3:
  318. """
  319. Constructs a large MobileNetV3 architecture from
  320. `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__.
  321. Args:
  322. weights (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
  323. pretrained weights to use. See
  324. :class:`~torchvision.models.MobileNet_V3_Large_Weights` below for
  325. more details, and possible values. By default, no pre-trained
  326. weights are used.
  327. progress (bool, optional): If True, displays a progress bar of the
  328. download to stderr. Default is True.
  329. **kwargs: parameters passed to the ``torchvision.models.mobilenet.MobileNetV3``
  330. base class. Please refer to the `source code
  331. <https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py>`_
  332. for more details about this class.
  333. .. autoclass:: torchvision.models.MobileNet_V3_Large_Weights
  334. :members:
  335. """
  336. weights = MobileNet_V3_Large_Weights.verify(weights)
  337. inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_large", **kwargs)
  338. return _mobilenet_v3(inverted_residual_setting, last_channel, weights, progress, **kwargs)
  339. @register_model()
  340. @handle_legacy_interface(weights=("pretrained", MobileNet_V3_Small_Weights.IMAGENET1K_V1))
  341. def mobilenet_v3_small(
  342. *, weights: Optional[MobileNet_V3_Small_Weights] = None, progress: bool = True, **kwargs: Any
  343. ) -> MobileNetV3:
  344. """
  345. Constructs a small MobileNetV3 architecture from
  346. `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__.
  347. Args:
  348. weights (:class:`~torchvision.models.MobileNet_V3_Small_Weights`, optional): The
  349. pretrained weights to use. See
  350. :class:`~torchvision.models.MobileNet_V3_Small_Weights` below for
  351. more details, and possible values. By default, no pre-trained
  352. weights are used.
  353. progress (bool, optional): If True, displays a progress bar of the
  354. download to stderr. Default is True.
  355. **kwargs: parameters passed to the ``torchvision.models.mobilenet.MobileNetV3``
  356. base class. Please refer to the `source code
  357. <https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py>`_
  358. for more details about this class.
  359. .. autoclass:: torchvision.models.MobileNet_V3_Small_Weights
  360. :members:
  361. """
  362. weights = MobileNet_V3_Small_Weights.verify(weights)
  363. inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_small", **kwargs)
  364. return _mobilenet_v3(inverted_residual_setting, last_channel, weights, progress, **kwargs)