123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260 |
- from functools import partial
- from typing import Any, Callable, List, Optional
- import torch
- from torch import nn, Tensor
- from ..ops.misc import Conv2dNormActivation
- from ..transforms._presets import ImageClassification
- from ..utils import _log_api_usage_once
- from ._api import register_model, Weights, WeightsEnum
- from ._meta import _IMAGENET_CATEGORIES
- from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface
- __all__ = ["MobileNetV2", "MobileNet_V2_Weights", "mobilenet_v2"]
- # necessary for backwards compatibility
- class InvertedResidual(nn.Module):
- def __init__(
- self, inp: int, oup: int, stride: int, expand_ratio: int, norm_layer: Optional[Callable[..., nn.Module]] = None
- ) -> None:
- super().__init__()
- self.stride = stride
- if stride not in [1, 2]:
- raise ValueError(f"stride should be 1 or 2 instead of {stride}")
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- hidden_dim = int(round(inp * expand_ratio))
- self.use_res_connect = self.stride == 1 and inp == oup
- layers: List[nn.Module] = []
- if expand_ratio != 1:
- # pw
- layers.append(
- Conv2dNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)
- )
- layers.extend(
- [
- # dw
- Conv2dNormActivation(
- hidden_dim,
- hidden_dim,
- stride=stride,
- groups=hidden_dim,
- norm_layer=norm_layer,
- activation_layer=nn.ReLU6,
- ),
- # pw-linear
- nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
- norm_layer(oup),
- ]
- )
- self.conv = nn.Sequential(*layers)
- self.out_channels = oup
- self._is_cn = stride > 1
- def forward(self, x: Tensor) -> Tensor:
- if self.use_res_connect:
- return x + self.conv(x)
- else:
- return self.conv(x)
- class MobileNetV2(nn.Module):
- def __init__(
- self,
- num_classes: int = 1000,
- width_mult: float = 1.0,
- inverted_residual_setting: Optional[List[List[int]]] = None,
- round_nearest: int = 8,
- block: Optional[Callable[..., nn.Module]] = None,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- dropout: float = 0.2,
- ) -> None:
- """
- MobileNet V2 main class
- Args:
- num_classes (int): Number of classes
- width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
- inverted_residual_setting: Network structure
- round_nearest (int): Round the number of channels in each layer to be a multiple of this number
- Set to 1 to turn off rounding
- block: Module specifying inverted residual building block for mobilenet
- norm_layer: Module specifying the normalization layer to use
- dropout (float): The droupout probability
- """
- super().__init__()
- _log_api_usage_once(self)
- if block is None:
- block = InvertedResidual
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- input_channel = 32
- last_channel = 1280
- if inverted_residual_setting is None:
- inverted_residual_setting = [
- # t, c, n, s
- [1, 16, 1, 1],
- [6, 24, 2, 2],
- [6, 32, 3, 2],
- [6, 64, 4, 2],
- [6, 96, 3, 1],
- [6, 160, 3, 2],
- [6, 320, 1, 1],
- ]
- # only check the first element, assuming user knows t,c,n,s are required
- if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
- raise ValueError(
- f"inverted_residual_setting should be non-empty or a 4-element list, got {inverted_residual_setting}"
- )
- # building first layer
- input_channel = _make_divisible(input_channel * width_mult, round_nearest)
- self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
- features: List[nn.Module] = [
- Conv2dNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6)
- ]
- # building inverted residual blocks
- for t, c, n, s in inverted_residual_setting:
- output_channel = _make_divisible(c * width_mult, round_nearest)
- for i in range(n):
- stride = s if i == 0 else 1
- features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))
- input_channel = output_channel
- # building last several layers
- features.append(
- Conv2dNormActivation(
- input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6
- )
- )
- # make it nn.Sequential
- self.features = nn.Sequential(*features)
- # building classifier
- self.classifier = nn.Sequential(
- nn.Dropout(p=dropout),
- nn.Linear(self.last_channel, num_classes),
- )
- # weight initialization
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out")
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
- nn.init.ones_(m.weight)
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.Linear):
- nn.init.normal_(m.weight, 0, 0.01)
- nn.init.zeros_(m.bias)
- def _forward_impl(self, x: Tensor) -> Tensor:
- # This exists since TorchScript doesn't support inheritance, so the superclass method
- # (this one) needs to have a name other than `forward` that can be accessed in a subclass
- x = self.features(x)
- # Cannot use "squeeze" as batch-size can be 1
- x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
- x = torch.flatten(x, 1)
- x = self.classifier(x)
- return x
- def forward(self, x: Tensor) -> Tensor:
- return self._forward_impl(x)
- _COMMON_META = {
- "num_params": 3504872,
- "min_size": (1, 1),
- "categories": _IMAGENET_CATEGORIES,
- }
- class MobileNet_V2_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/mobilenet_v2-b0353104.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv2",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 71.878,
- "acc@5": 90.286,
- }
- },
- "_ops": 0.301,
- "_file_size": 13.555,
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- },
- )
- IMAGENET1K_V2 = Weights(
- url="https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 72.154,
- "acc@5": 90.822,
- }
- },
- "_ops": 0.301,
- "_file_size": 13.598,
- "_docs": """
- These weights improve upon the results of the original paper by using a modified version of TorchVision's
- `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V2
- @register_model()
- @handle_legacy_interface(weights=("pretrained", MobileNet_V2_Weights.IMAGENET1K_V1))
- def mobilenet_v2(
- *, weights: Optional[MobileNet_V2_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> MobileNetV2:
- """MobileNetV2 architecture from the `MobileNetV2: Inverted Residuals and Linear
- Bottlenecks <https://arxiv.org/abs/1801.04381>`_ paper.
- Args:
- weights (:class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.MobileNet_V2_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.mobilenetv2.MobileNetV2``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.MobileNet_V2_Weights
- :members:
- """
- weights = MobileNet_V2_Weights.verify(weights)
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = MobileNetV2(**kwargs)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
|