123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345 |
- import warnings
- from collections import namedtuple
- from functools import partial
- from typing import Any, Callable, List, Optional, Tuple
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch import Tensor
- from ..transforms._presets import ImageClassification
- from ..utils import _log_api_usage_once
- from ._api import register_model, Weights, WeightsEnum
- from ._meta import _IMAGENET_CATEGORIES
- from ._utils import _ovewrite_named_param, handle_legacy_interface
- __all__ = ["GoogLeNet", "GoogLeNetOutputs", "_GoogLeNetOutputs", "GoogLeNet_Weights", "googlenet"]
- GoogLeNetOutputs = namedtuple("GoogLeNetOutputs", ["logits", "aux_logits2", "aux_logits1"])
- GoogLeNetOutputs.__annotations__ = {"logits": Tensor, "aux_logits2": Optional[Tensor], "aux_logits1": Optional[Tensor]}
- # Script annotations failed with _GoogleNetOutputs = namedtuple ...
- # _GoogLeNetOutputs set here for backwards compat
- _GoogLeNetOutputs = GoogLeNetOutputs
- class GoogLeNet(nn.Module):
- __constants__ = ["aux_logits", "transform_input"]
- def __init__(
- self,
- num_classes: int = 1000,
- aux_logits: bool = True,
- transform_input: bool = False,
- init_weights: Optional[bool] = None,
- blocks: Optional[List[Callable[..., nn.Module]]] = None,
- dropout: float = 0.2,
- dropout_aux: float = 0.7,
- ) -> None:
- super().__init__()
- _log_api_usage_once(self)
- if blocks is None:
- blocks = [BasicConv2d, Inception, InceptionAux]
- if init_weights is None:
- warnings.warn(
- "The default weight initialization of GoogleNet will be changed in future releases of "
- "torchvision. If you wish to keep the old behavior (which leads to long initialization times"
- " due to scipy/scipy#11299), please set init_weights=True.",
- FutureWarning,
- )
- init_weights = True
- if len(blocks) != 3:
- raise ValueError(f"blocks length should be 3 instead of {len(blocks)}")
- conv_block = blocks[0]
- inception_block = blocks[1]
- inception_aux_block = blocks[2]
- self.aux_logits = aux_logits
- self.transform_input = transform_input
- self.conv1 = conv_block(3, 64, kernel_size=7, stride=2, padding=3)
- self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
- self.conv2 = conv_block(64, 64, kernel_size=1)
- self.conv3 = conv_block(64, 192, kernel_size=3, padding=1)
- self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
- self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)
- self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)
- self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
- self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)
- self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)
- self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)
- self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)
- self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)
- self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
- self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)
- self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128)
- if aux_logits:
- self.aux1 = inception_aux_block(512, num_classes, dropout=dropout_aux)
- self.aux2 = inception_aux_block(528, num_classes, dropout=dropout_aux)
- else:
- self.aux1 = None # type: ignore[assignment]
- self.aux2 = None # type: ignore[assignment]
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- self.dropout = nn.Dropout(p=dropout)
- self.fc = nn.Linear(1024, num_classes)
- if init_weights:
- for m in self.modules():
- if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
- torch.nn.init.trunc_normal_(m.weight, mean=0.0, std=0.01, a=-2, b=2)
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
- def _transform_input(self, x: Tensor) -> Tensor:
- if self.transform_input:
- x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
- x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
- x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
- x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
- return x
- def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
- # N x 3 x 224 x 224
- x = self.conv1(x)
- # N x 64 x 112 x 112
- x = self.maxpool1(x)
- # N x 64 x 56 x 56
- x = self.conv2(x)
- # N x 64 x 56 x 56
- x = self.conv3(x)
- # N x 192 x 56 x 56
- x = self.maxpool2(x)
- # N x 192 x 28 x 28
- x = self.inception3a(x)
- # N x 256 x 28 x 28
- x = self.inception3b(x)
- # N x 480 x 28 x 28
- x = self.maxpool3(x)
- # N x 480 x 14 x 14
- x = self.inception4a(x)
- # N x 512 x 14 x 14
- aux1: Optional[Tensor] = None
- if self.aux1 is not None:
- if self.training:
- aux1 = self.aux1(x)
- x = self.inception4b(x)
- # N x 512 x 14 x 14
- x = self.inception4c(x)
- # N x 512 x 14 x 14
- x = self.inception4d(x)
- # N x 528 x 14 x 14
- aux2: Optional[Tensor] = None
- if self.aux2 is not None:
- if self.training:
- aux2 = self.aux2(x)
- x = self.inception4e(x)
- # N x 832 x 14 x 14
- x = self.maxpool4(x)
- # N x 832 x 7 x 7
- x = self.inception5a(x)
- # N x 832 x 7 x 7
- x = self.inception5b(x)
- # N x 1024 x 7 x 7
- x = self.avgpool(x)
- # N x 1024 x 1 x 1
- x = torch.flatten(x, 1)
- # N x 1024
- x = self.dropout(x)
- x = self.fc(x)
- # N x 1000 (num_classes)
- return x, aux2, aux1
- @torch.jit.unused
- def eager_outputs(self, x: Tensor, aux2: Tensor, aux1: Optional[Tensor]) -> GoogLeNetOutputs:
- if self.training and self.aux_logits:
- return _GoogLeNetOutputs(x, aux2, aux1)
- else:
- return x # type: ignore[return-value]
- def forward(self, x: Tensor) -> GoogLeNetOutputs:
- x = self._transform_input(x)
- x, aux1, aux2 = self._forward(x)
- aux_defined = self.training and self.aux_logits
- if torch.jit.is_scripting():
- if not aux_defined:
- warnings.warn("Scripted GoogleNet always returns GoogleNetOutputs Tuple")
- return GoogLeNetOutputs(x, aux2, aux1)
- else:
- return self.eager_outputs(x, aux2, aux1)
- class Inception(nn.Module):
- def __init__(
- self,
- in_channels: int,
- ch1x1: int,
- ch3x3red: int,
- ch3x3: int,
- ch5x5red: int,
- ch5x5: int,
- pool_proj: int,
- conv_block: Optional[Callable[..., nn.Module]] = None,
- ) -> None:
- super().__init__()
- if conv_block is None:
- conv_block = BasicConv2d
- self.branch1 = conv_block(in_channels, ch1x1, kernel_size=1)
- self.branch2 = nn.Sequential(
- conv_block(in_channels, ch3x3red, kernel_size=1), conv_block(ch3x3red, ch3x3, kernel_size=3, padding=1)
- )
- self.branch3 = nn.Sequential(
- conv_block(in_channels, ch5x5red, kernel_size=1),
- # Here, kernel_size=3 instead of kernel_size=5 is a known bug.
- # Please see https://github.com/pytorch/vision/issues/906 for details.
- conv_block(ch5x5red, ch5x5, kernel_size=3, padding=1),
- )
- self.branch4 = nn.Sequential(
- nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
- conv_block(in_channels, pool_proj, kernel_size=1),
- )
- def _forward(self, x: Tensor) -> List[Tensor]:
- branch1 = self.branch1(x)
- branch2 = self.branch2(x)
- branch3 = self.branch3(x)
- branch4 = self.branch4(x)
- outputs = [branch1, branch2, branch3, branch4]
- return outputs
- def forward(self, x: Tensor) -> Tensor:
- outputs = self._forward(x)
- return torch.cat(outputs, 1)
- class InceptionAux(nn.Module):
- def __init__(
- self,
- in_channels: int,
- num_classes: int,
- conv_block: Optional[Callable[..., nn.Module]] = None,
- dropout: float = 0.7,
- ) -> None:
- super().__init__()
- if conv_block is None:
- conv_block = BasicConv2d
- self.conv = conv_block(in_channels, 128, kernel_size=1)
- self.fc1 = nn.Linear(2048, 1024)
- self.fc2 = nn.Linear(1024, num_classes)
- self.dropout = nn.Dropout(p=dropout)
- def forward(self, x: Tensor) -> Tensor:
- # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
- x = F.adaptive_avg_pool2d(x, (4, 4))
- # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
- x = self.conv(x)
- # N x 128 x 4 x 4
- x = torch.flatten(x, 1)
- # N x 2048
- x = F.relu(self.fc1(x), inplace=True)
- # N x 1024
- x = self.dropout(x)
- # N x 1024
- x = self.fc2(x)
- # N x 1000 (num_classes)
- return x
- class BasicConv2d(nn.Module):
- def __init__(self, in_channels: int, out_channels: int, **kwargs: Any) -> None:
- super().__init__()
- self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
- self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
- def forward(self, x: Tensor) -> Tensor:
- x = self.conv(x)
- x = self.bn(x)
- return F.relu(x, inplace=True)
- class GoogLeNet_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/googlenet-1378be20.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- "num_params": 6624904,
- "min_size": (15, 15),
- "categories": _IMAGENET_CATEGORIES,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#googlenet",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 69.778,
- "acc@5": 89.530,
- }
- },
- "_ops": 1.498,
- "_file_size": 49.731,
- "_docs": """These weights are ported from the original paper.""",
- },
- )
- DEFAULT = IMAGENET1K_V1
- @register_model()
- @handle_legacy_interface(weights=("pretrained", GoogLeNet_Weights.IMAGENET1K_V1))
- def googlenet(*, weights: Optional[GoogLeNet_Weights] = None, progress: bool = True, **kwargs: Any) -> GoogLeNet:
- """GoogLeNet (Inception v1) model architecture from
- `Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`_.
- Args:
- weights (:class:`~torchvision.models.GoogLeNet_Weights`, optional): The
- pretrained weights for the model. See
- :class:`~torchvision.models.GoogLeNet_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.GoogLeNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.GoogLeNet_Weights
- :members:
- """
- weights = GoogLeNet_Weights.verify(weights)
- original_aux_logits = kwargs.get("aux_logits", False)
- if weights is not None:
- if "transform_input" not in kwargs:
- _ovewrite_named_param(kwargs, "transform_input", True)
- _ovewrite_named_param(kwargs, "aux_logits", True)
- _ovewrite_named_param(kwargs, "init_weights", False)
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = GoogLeNet(**kwargs)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- if not original_aux_logits:
- model.aux_logits = False
- model.aux1 = None # type: ignore[assignment]
- model.aux2 = None # type: ignore[assignment]
- else:
- warnings.warn(
- "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them"
- )
- return model
|