123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563 |
- import inspect
- import math
- import re
- import warnings
- from collections import OrderedDict
- from copy import deepcopy
- from itertools import chain
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
- import torch
- import torchvision
- from torch import fx, nn
- from torch.fx.graph_module import _copy_attr
- __all__ = ["create_feature_extractor", "get_graph_node_names"]
- class LeafModuleAwareTracer(fx.Tracer):
- """
- An fx.Tracer that allows the user to specify a set of leaf modules, i.e.
- modules that are not to be traced through. The resulting graph ends up
- having single nodes referencing calls to the leaf modules' forward methods.
- """
- def __init__(self, *args, **kwargs):
- self.leaf_modules = {}
- if "leaf_modules" in kwargs:
- leaf_modules = kwargs.pop("leaf_modules")
- self.leaf_modules = leaf_modules
- super().__init__(*args, **kwargs)
- def is_leaf_module(self, m: nn.Module, module_qualname: str) -> bool:
- if isinstance(m, tuple(self.leaf_modules)):
- return True
- return super().is_leaf_module(m, module_qualname)
- class NodePathTracer(LeafModuleAwareTracer):
- """
- NodePathTracer is an FX tracer that, for each operation, also records the
- name of the Node from which the operation originated. A node name here is
- a `.` separated path walking the hierarchy from top level module down to
- leaf operation or leaf module. The name of the top level module is not
- included as part of the node name. For example, if we trace a module whose
- forward method applies a ReLU module, the name for that node will simply
- be 'relu'.
- Some notes on the specifics:
- - Nodes are recorded to `self.node_to_qualname` which is a dictionary
- mapping a given Node object to its node name.
- - Nodes are recorded in the order which they are executed during
- tracing.
- - When a duplicate node name is encountered, a suffix of the form
- _{int} is added. The counter starts from 1.
- """
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # Track the qualified name of the Node being traced
- self.current_module_qualname = ""
- # A map from FX Node to the qualified name\#
- # NOTE: This is loosely like the "qualified name" mentioned in the
- # torch.fx docs https://pytorch.org/docs/stable/fx.html but adapted
- # for the purposes of the torchvision feature extractor
- self.node_to_qualname = OrderedDict()
- def call_module(self, m: torch.nn.Module, forward: Callable, args, kwargs):
- """
- Override of `fx.Tracer.call_module`
- This override:
- 1) Stores away the qualified name of the caller for restoration later
- 2) Adds the qualified name of the caller to
- `current_module_qualname` for retrieval by `create_proxy`
- 3) Once a leaf module is reached, calls `create_proxy`
- 4) Restores the caller's qualified name into current_module_qualname
- """
- old_qualname = self.current_module_qualname
- try:
- module_qualname = self.path_of_module(m)
- self.current_module_qualname = module_qualname
- if not self.is_leaf_module(m, module_qualname):
- out = forward(*args, **kwargs)
- return out
- return self.create_proxy("call_module", module_qualname, args, kwargs)
- finally:
- self.current_module_qualname = old_qualname
- def create_proxy(
- self, kind: str, target: fx.node.Target, args, kwargs, name=None, type_expr=None, *_
- ) -> fx.proxy.Proxy:
- """
- Override of `Tracer.create_proxy`. This override intercepts the recording
- of every operation and stores away the current traced module's qualified
- name in `node_to_qualname`
- """
- proxy = super().create_proxy(kind, target, args, kwargs, name, type_expr)
- self.node_to_qualname[proxy.node] = self._get_node_qualname(self.current_module_qualname, proxy.node)
- return proxy
- def _get_node_qualname(self, module_qualname: str, node: fx.node.Node) -> str:
- node_qualname = module_qualname
- if node.op != "call_module":
- # In this case module_qualname from torch.fx doesn't go all the
- # way to the leaf function/op, so we need to append it
- if len(node_qualname) > 0:
- # Only append '.' if we are deeper than the top level module
- node_qualname += "."
- node_qualname += str(node)
- # Now we need to add an _{index} postfix on any repeated node names
- # For modules we do this from scratch
- # But for anything else, torch.fx already has a globally scoped
- # _{index} postfix. But we want it locally (relative to direct parent)
- # scoped. So first we need to undo the torch.fx postfix
- if re.match(r".+_[0-9]+$", node_qualname) is not None:
- node_qualname = node_qualname.rsplit("_", 1)[0]
- # ... and now we add on our own postfix
- for existing_qualname in reversed(self.node_to_qualname.values()):
- # Check to see if existing_qualname is of the form
- # {node_qualname} or {node_qualname}_{int}
- if re.match(rf"{node_qualname}(_[0-9]+)?$", existing_qualname) is not None:
- postfix = existing_qualname.replace(node_qualname, "")
- if len(postfix):
- # existing_qualname is of the form {node_qualname}_{int}
- next_index = int(postfix[1:]) + 1
- else:
- # existing_qualname is of the form {node_qualname}
- next_index = 1
- node_qualname += f"_{next_index}"
- break
- return node_qualname
- def _is_subseq(x, y):
- """Check if y is a subsequence of x
- https://stackoverflow.com/a/24017747/4391249
- """
- iter_x = iter(x)
- return all(any(x_item == y_item for x_item in iter_x) for y_item in y)
- def _warn_graph_differences(train_tracer: NodePathTracer, eval_tracer: NodePathTracer):
- """
- Utility function for warning the user if there are differences between
- the train graph nodes and the eval graph nodes.
- """
- train_nodes = list(train_tracer.node_to_qualname.values())
- eval_nodes = list(eval_tracer.node_to_qualname.values())
- if len(train_nodes) == len(eval_nodes) and all(t == e for t, e in zip(train_nodes, eval_nodes)):
- return
- suggestion_msg = (
- "When choosing nodes for feature extraction, you may need to specify "
- "output nodes for train and eval mode separately."
- )
- if _is_subseq(train_nodes, eval_nodes):
- msg = (
- "NOTE: The nodes obtained by tracing the model in eval mode "
- "are a subsequence of those obtained in train mode. "
- )
- elif _is_subseq(eval_nodes, train_nodes):
- msg = (
- "NOTE: The nodes obtained by tracing the model in train mode "
- "are a subsequence of those obtained in eval mode. "
- )
- else:
- msg = "The nodes obtained by tracing the model in train mode are different to those obtained in eval mode. "
- warnings.warn(msg + suggestion_msg)
- def _get_leaf_modules_for_ops() -> List[type]:
- members = inspect.getmembers(torchvision.ops)
- result = []
- for _, obj in members:
- if inspect.isclass(obj) and issubclass(obj, torch.nn.Module):
- result.append(obj)
- return result
- def _set_default_tracer_kwargs(original_tr_kwargs: Optional[Dict[str, Any]]) -> Dict[str, Any]:
- default_autowrap_modules = (math, torchvision.ops)
- default_leaf_modules = _get_leaf_modules_for_ops()
- result_tracer_kwargs = {} if original_tr_kwargs is None else original_tr_kwargs
- result_tracer_kwargs["autowrap_modules"] = (
- tuple(set(result_tracer_kwargs["autowrap_modules"] + default_autowrap_modules))
- if "autowrap_modules" in result_tracer_kwargs
- else default_autowrap_modules
- )
- result_tracer_kwargs["leaf_modules"] = (
- list(set(result_tracer_kwargs["leaf_modules"] + default_leaf_modules))
- if "leaf_modules" in result_tracer_kwargs
- else default_leaf_modules
- )
- return result_tracer_kwargs
- def get_graph_node_names(
- model: nn.Module,
- tracer_kwargs: Optional[Dict[str, Any]] = None,
- suppress_diff_warning: bool = False,
- ) -> Tuple[List[str], List[str]]:
- """
- Dev utility to return node names in order of execution. See note on node
- names under :func:`create_feature_extractor`. Useful for seeing which node
- names are available for feature extraction. There are two reasons that
- node names can't easily be read directly from the code for a model:
- 1. Not all submodules are traced through. Modules from ``torch.nn`` all
- fall within this category.
- 2. Nodes representing the repeated application of the same operation
- or leaf module get a ``_{counter}`` postfix.
- The model is traced twice: once in train mode, and once in eval mode. Both
- sets of node names are returned.
- For more details on the node naming conventions used here, please see the
- :ref:`relevant subheading <about-node-names>` in the
- `documentation <https://pytorch.org/vision/stable/feature_extraction.html>`_.
- Args:
- model (nn.Module): model for which we'd like to print node names
- tracer_kwargs (dict, optional): a dictionary of keyword arguments for
- ``NodePathTracer`` (they are eventually passed onto
- `torch.fx.Tracer <https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer>`_).
- By default, it will be set to wrap and make leaf nodes all torchvision ops:
- {"autowrap_modules": (math, torchvision.ops,),"leaf_modules": _get_leaf_modules_for_ops(),}
- WARNING: In case the user provides tracer_kwargs, above default arguments will be appended to the user
- provided dictionary.
- suppress_diff_warning (bool, optional): whether to suppress a warning
- when there are discrepancies between the train and eval version of
- the graph. Defaults to False.
- Returns:
- tuple(list, list): a list of node names from tracing the model in
- train mode, and another from tracing the model in eval mode.
- Examples::
- >>> model = torchvision.models.resnet18()
- >>> train_nodes, eval_nodes = get_graph_node_names(model)
- """
- tracer_kwargs = _set_default_tracer_kwargs(tracer_kwargs)
- is_training = model.training
- train_tracer = NodePathTracer(**tracer_kwargs)
- train_tracer.trace(model.train())
- eval_tracer = NodePathTracer(**tracer_kwargs)
- eval_tracer.trace(model.eval())
- train_nodes = list(train_tracer.node_to_qualname.values())
- eval_nodes = list(eval_tracer.node_to_qualname.values())
- if not suppress_diff_warning:
- _warn_graph_differences(train_tracer, eval_tracer)
- # Restore training state
- model.train(is_training)
- return train_nodes, eval_nodes
- class DualGraphModule(fx.GraphModule):
- """
- A derivative of `fx.GraphModule`. Differs in the following ways:
- - Requires a train and eval version of the underlying graph
- - Copies submodules according to the nodes of both train and eval graphs.
- - Calling train(mode) switches between train graph and eval graph.
- """
- def __init__(
- self, root: torch.nn.Module, train_graph: fx.Graph, eval_graph: fx.Graph, class_name: str = "GraphModule"
- ):
- """
- Args:
- root (nn.Module): module from which the copied module hierarchy is
- built
- train_graph (fx.Graph): the graph that should be used in train mode
- eval_graph (fx.Graph): the graph that should be used in eval mode
- """
- super(fx.GraphModule, self).__init__()
- self.__class__.__name__ = class_name
- self.train_graph = train_graph
- self.eval_graph = eval_graph
- # Copy all get_attr and call_module ops (indicated by BOTH train and
- # eval graphs)
- for node in chain(iter(train_graph.nodes), iter(eval_graph.nodes)):
- if node.op in ["get_attr", "call_module"]:
- if not isinstance(node.target, str):
- raise TypeError(f"node.target should be of type str instead of {type(node.target)}")
- _copy_attr(root, self, node.target)
- # train mode by default
- self.train()
- self.graph = train_graph
- # (borrowed from fx.GraphModule):
- # Store the Tracer class responsible for creating a Graph separately as part of the
- # GraphModule state, except when the Tracer is defined in a local namespace.
- # Locally defined Tracers are not pickleable. This is needed because torch.package will
- # serialize a GraphModule without retaining the Graph, and needs to use the correct Tracer
- # to re-create the Graph during deserialization.
- if self.eval_graph._tracer_cls != self.train_graph._tracer_cls:
- raise TypeError(
- f"Train mode and eval mode should use the same tracer class. Instead got {self.eval_graph._tracer_cls} for eval vs {self.train_graph._tracer_cls} for train"
- )
- self._tracer_cls = None
- if self.graph._tracer_cls and "<locals>" not in self.graph._tracer_cls.__qualname__:
- self._tracer_cls = self.graph._tracer_cls
- def train(self, mode=True):
- """
- Swap out the graph depending on the selected training mode.
- NOTE this should be safe when calling model.eval() because that just
- calls this with mode == False.
- """
- # NOTE: Only set self.graph if the current graph is not the desired
- # one. This saves us from recompiling the graph where not necessary.
- if mode and not self.training:
- self.graph = self.train_graph
- elif not mode and self.training:
- self.graph = self.eval_graph
- return super().train(mode=mode)
- def create_feature_extractor(
- model: nn.Module,
- return_nodes: Optional[Union[List[str], Dict[str, str]]] = None,
- train_return_nodes: Optional[Union[List[str], Dict[str, str]]] = None,
- eval_return_nodes: Optional[Union[List[str], Dict[str, str]]] = None,
- tracer_kwargs: Optional[Dict[str, Any]] = None,
- suppress_diff_warning: bool = False,
- ) -> fx.GraphModule:
- """
- Creates a new graph module that returns intermediate nodes from a given
- model as dictionary with user specified keys as strings, and the requested
- outputs as values. This is achieved by re-writing the computation graph of
- the model via FX to return the desired nodes as outputs. All unused nodes
- are removed, together with their corresponding parameters.
- Desired output nodes must be specified as a ``.`` separated
- path walking the module hierarchy from top level module down to leaf
- operation or leaf module. For more details on the node naming conventions
- used here, please see the :ref:`relevant subheading <about-node-names>`
- in the `documentation <https://pytorch.org/vision/stable/feature_extraction.html>`_.
- Not all models will be FX traceable, although with some massaging they can
- be made to cooperate. Here's a (not exhaustive) list of tips:
- - If you don't need to trace through a particular, problematic
- sub-module, turn it into a "leaf module" by passing a list of
- ``leaf_modules`` as one of the ``tracer_kwargs`` (see example below).
- It will not be traced through, but rather, the resulting graph will
- hold a reference to that module's forward method.
- - Likewise, you may turn functions into leaf functions by passing a
- list of ``autowrap_functions`` as one of the ``tracer_kwargs`` (see
- example below).
- - Some inbuilt Python functions can be problematic. For instance,
- ``int`` will raise an error during tracing. You may wrap them in your
- own function and then pass that in ``autowrap_functions`` as one of
- the ``tracer_kwargs``.
- For further information on FX see the
- `torch.fx documentation <https://pytorch.org/docs/stable/fx.html>`_.
- Args:
- model (nn.Module): model on which we will extract the features
- return_nodes (list or dict, optional): either a ``List`` or a ``Dict``
- containing the names (or partial names - see note above)
- of the nodes for which the activations will be returned. If it is
- a ``Dict``, the keys are the node names, and the values
- are the user-specified keys for the graph module's returned
- dictionary. If it is a ``List``, it is treated as a ``Dict`` mapping
- node specification strings directly to output names. In the case
- that ``train_return_nodes`` and ``eval_return_nodes`` are specified,
- this should not be specified.
- train_return_nodes (list or dict, optional): similar to
- ``return_nodes``. This can be used if the return nodes
- for train mode are different than those from eval mode.
- If this is specified, ``eval_return_nodes`` must also be specified,
- and ``return_nodes`` should not be specified.
- eval_return_nodes (list or dict, optional): similar to
- ``return_nodes``. This can be used if the return nodes
- for train mode are different than those from eval mode.
- If this is specified, ``train_return_nodes`` must also be specified,
- and `return_nodes` should not be specified.
- tracer_kwargs (dict, optional): a dictionary of keyword arguments for
- ``NodePathTracer`` (which passes them onto it's parent class
- `torch.fx.Tracer <https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer>`_).
- By default, it will be set to wrap and make leaf nodes all torchvision ops:
- {"autowrap_modules": (math, torchvision.ops,),"leaf_modules": _get_leaf_modules_for_ops(),}
- WARNING: In case the user provides tracer_kwargs, above default arguments will be appended to the user
- provided dictionary.
- suppress_diff_warning (bool, optional): whether to suppress a warning
- when there are discrepancies between the train and eval version of
- the graph. Defaults to False.
- Examples::
- >>> # Feature extraction with resnet
- >>> model = torchvision.models.resnet18()
- >>> # extract layer1 and layer3, giving as names `feat1` and feat2`
- >>> model = create_feature_extractor(
- >>> model, {'layer1': 'feat1', 'layer3': 'feat2'})
- >>> out = model(torch.rand(1, 3, 224, 224))
- >>> print([(k, v.shape) for k, v in out.items()])
- >>> [('feat1', torch.Size([1, 64, 56, 56])),
- >>> ('feat2', torch.Size([1, 256, 14, 14]))]
- >>> # Specifying leaf modules and leaf functions
- >>> def leaf_function(x):
- >>> # This would raise a TypeError if traced through
- >>> return int(x)
- >>>
- >>> class LeafModule(torch.nn.Module):
- >>> def forward(self, x):
- >>> # This would raise a TypeError if traced through
- >>> int(x.shape[0])
- >>> return torch.nn.functional.relu(x + 4)
- >>>
- >>> class MyModule(torch.nn.Module):
- >>> def __init__(self):
- >>> super().__init__()
- >>> self.conv = torch.nn.Conv2d(3, 1, 3)
- >>> self.leaf_module = LeafModule()
- >>>
- >>> def forward(self, x):
- >>> leaf_function(x.shape[0])
- >>> x = self.conv(x)
- >>> return self.leaf_module(x)
- >>>
- >>> model = create_feature_extractor(
- >>> MyModule(), return_nodes=['leaf_module'],
- >>> tracer_kwargs={'leaf_modules': [LeafModule],
- >>> 'autowrap_functions': [leaf_function]})
- """
- tracer_kwargs = _set_default_tracer_kwargs(tracer_kwargs)
- is_training = model.training
- if all(arg is None for arg in [return_nodes, train_return_nodes, eval_return_nodes]):
- raise ValueError(
- "Either `return_nodes` or `train_return_nodes` and `eval_return_nodes` together, should be specified"
- )
- if (train_return_nodes is None) ^ (eval_return_nodes is None):
- raise ValueError(
- "If any of `train_return_nodes` and `eval_return_nodes` are specified, then both should be specified"
- )
- if not ((return_nodes is None) ^ (train_return_nodes is None)):
- raise ValueError("If `train_return_nodes` and `eval_return_nodes` are specified, then both should be specified")
- # Put *_return_nodes into Dict[str, str] format
- def to_strdict(n) -> Dict[str, str]:
- if isinstance(n, list):
- return {str(i): str(i) for i in n}
- return {str(k): str(v) for k, v in n.items()}
- if train_return_nodes is None:
- return_nodes = to_strdict(return_nodes)
- train_return_nodes = deepcopy(return_nodes)
- eval_return_nodes = deepcopy(return_nodes)
- else:
- train_return_nodes = to_strdict(train_return_nodes)
- eval_return_nodes = to_strdict(eval_return_nodes)
- # Repeat the tracing and graph rewriting for train and eval mode
- tracers = {}
- graphs = {}
- mode_return_nodes: Dict[str, Dict[str, str]] = {"train": train_return_nodes, "eval": eval_return_nodes}
- for mode in ["train", "eval"]:
- if mode == "train":
- model.train()
- elif mode == "eval":
- model.eval()
- # Instantiate our NodePathTracer and use that to trace the model
- tracer = NodePathTracer(**tracer_kwargs)
- graph = tracer.trace(model)
- name = model.__class__.__name__ if isinstance(model, nn.Module) else model.__name__
- graph_module = fx.GraphModule(tracer.root, graph, name)
- available_nodes = list(tracer.node_to_qualname.values())
- # FIXME We don't know if we should expect this to happen
- if len(set(available_nodes)) != len(available_nodes):
- raise ValueError(
- "There are duplicate nodes! Please raise an issue https://github.com/pytorch/vision/issues"
- )
- # Check that all outputs in return_nodes are present in the model
- for query in mode_return_nodes[mode].keys():
- # To check if a query is available we need to check that at least
- # one of the available names starts with it up to a .
- if not any([re.match(rf"^{query}(\.|$)", n) is not None for n in available_nodes]):
- raise ValueError(
- f"node: '{query}' is not present in model. Hint: use "
- "`get_graph_node_names` to make sure the "
- "`return_nodes` you specified are present. It may even "
- "be that you need to specify `train_return_nodes` and "
- "`eval_return_nodes` separately."
- )
- # Remove existing output nodes (train mode)
- orig_output_nodes = []
- for n in reversed(graph_module.graph.nodes):
- if n.op == "output":
- orig_output_nodes.append(n)
- if not orig_output_nodes:
- raise ValueError("No output nodes found in graph_module.graph.nodes")
- for n in orig_output_nodes:
- graph_module.graph.erase_node(n)
- # Find nodes corresponding to return_nodes and make them into output_nodes
- nodes = [n for n in graph_module.graph.nodes]
- output_nodes = OrderedDict()
- for n in reversed(nodes):
- module_qualname = tracer.node_to_qualname.get(n)
- if module_qualname is None:
- # NOTE - Know cases where this happens:
- # - Node representing creation of a tensor constant - probably
- # not interesting as a return node
- # - When packing outputs into a named tuple like in InceptionV3
- continue
- for query in mode_return_nodes[mode]:
- depth = query.count(".")
- if ".".join(module_qualname.split(".")[: depth + 1]) == query:
- output_nodes[mode_return_nodes[mode][query]] = n
- mode_return_nodes[mode].pop(query)
- break
- output_nodes = OrderedDict(reversed(list(output_nodes.items())))
- # And add them in the end of the graph
- with graph_module.graph.inserting_after(nodes[-1]):
- graph_module.graph.output(output_nodes)
- # Remove unused modules / parameters
- graph_module.graph.eliminate_dead_code()
- graph_module.recompile()
- # Keep track of the tracer and graph, so we can choose the main one
- tracers[mode] = tracer
- graphs[mode] = graph
- # Warn user if there are any discrepancies between the graphs of the
- # train and eval modes
- if not suppress_diff_warning:
- _warn_graph_differences(tracers["train"], tracers["eval"])
- # Build the final graph module
- graph_module = DualGraphModule(model, graphs["train"], graphs["eval"], class_name=name)
- # Restore original training mode
- model.train(is_training)
- graph_module.train(is_training)
- return graph_module
|