123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- import math
- from typing import Any, Dict, List, Optional, Tuple
- import torch
- import torchvision
- from torch import nn, Tensor
- from .image_list import ImageList
- from .roi_heads import paste_masks_in_image
- @torch.jit.unused
- def _get_shape_onnx(image: Tensor) -> Tensor:
- from torch.onnx import operators
- return operators.shape_as_tensor(image)[-2:]
- @torch.jit.unused
- def _fake_cast_onnx(v: Tensor) -> float:
- # ONNX requires a tensor but here we fake its type for JIT.
- return v
- def _resize_image_and_masks(
- image: Tensor,
- self_min_size: int,
- self_max_size: int,
- target: Optional[Dict[str, Tensor]] = None,
- fixed_size: Optional[Tuple[int, int]] = None,
- ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
- if torchvision._is_tracing():
- im_shape = _get_shape_onnx(image)
- else:
- im_shape = torch.tensor(image.shape[-2:])
- size: Optional[List[int]] = None
- scale_factor: Optional[float] = None
- recompute_scale_factor: Optional[bool] = None
- if fixed_size is not None:
- size = [fixed_size[1], fixed_size[0]]
- else:
- if torch.jit.is_scripting() or torchvision._is_tracing():
- min_size = torch.min(im_shape).to(dtype=torch.float32)
- max_size = torch.max(im_shape).to(dtype=torch.float32)
- self_min_size_f = float(self_min_size)
- self_max_size_f = float(self_max_size)
- scale = torch.min(self_min_size_f / min_size, self_max_size_f / max_size)
- if torchvision._is_tracing():
- scale_factor = _fake_cast_onnx(scale)
- else:
- scale_factor = scale.item()
- else:
- # Do it the normal way
- min_size = min(im_shape)
- max_size = max(im_shape)
- scale_factor = min(self_min_size / min_size, self_max_size / max_size)
- recompute_scale_factor = True
- image = torch.nn.functional.interpolate(
- image[None],
- size=size,
- scale_factor=scale_factor,
- mode="bilinear",
- recompute_scale_factor=recompute_scale_factor,
- align_corners=False,
- )[0]
- if target is None:
- return image, target
- if "masks" in target:
- mask = target["masks"]
- mask = torch.nn.functional.interpolate(
- mask[:, None].float(), size=size, scale_factor=scale_factor, recompute_scale_factor=recompute_scale_factor
- )[:, 0].byte()
- target["masks"] = mask
- return image, target
- class GeneralizedRCNNTransform(nn.Module):
- """
- Performs input / target transformation before feeding the data to a GeneralizedRCNN
- model.
- The transformations it performs are:
- - input normalization (mean subtraction and std division)
- - input / target resizing to match min_size / max_size
- It returns a ImageList for the inputs, and a List[Dict[Tensor]] for the targets
- """
- def __init__(
- self,
- min_size: int,
- max_size: int,
- image_mean: List[float],
- image_std: List[float],
- size_divisible: int = 32,
- fixed_size: Optional[Tuple[int, int]] = None,
- **kwargs: Any,
- ):
- super().__init__()
- if not isinstance(min_size, (list, tuple)):
- min_size = (min_size,)
- self.min_size = min_size
- self.max_size = max_size
- self.image_mean = image_mean
- self.image_std = image_std
- self.size_divisible = size_divisible
- self.fixed_size = fixed_size
- self._skip_resize = kwargs.pop("_skip_resize", False)
- def forward(
- self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None
- ) -> Tuple[ImageList, Optional[List[Dict[str, Tensor]]]]:
- images = [img for img in images]
- if targets is not None:
- # make a copy of targets to avoid modifying it in-place
- # once torchscript supports dict comprehension
- # this can be simplified as follows
- # targets = [{k: v for k,v in t.items()} for t in targets]
- targets_copy: List[Dict[str, Tensor]] = []
- for t in targets:
- data: Dict[str, Tensor] = {}
- for k, v in t.items():
- data[k] = v
- targets_copy.append(data)
- targets = targets_copy
- for i in range(len(images)):
- image = images[i]
- target_index = targets[i] if targets is not None else None
- if image.dim() != 3:
- raise ValueError(f"images is expected to be a list of 3d tensors of shape [C, H, W], got {image.shape}")
- image = self.normalize(image)
- image, target_index = self.resize(image, target_index)
- images[i] = image
- if targets is not None and target_index is not None:
- targets[i] = target_index
- image_sizes = [img.shape[-2:] for img in images]
- images = self.batch_images(images, size_divisible=self.size_divisible)
- image_sizes_list: List[Tuple[int, int]] = []
- for image_size in image_sizes:
- torch._assert(
- len(image_size) == 2,
- f"Input tensors expected to have in the last two elements H and W, instead got {image_size}",
- )
- image_sizes_list.append((image_size[0], image_size[1]))
- image_list = ImageList(images, image_sizes_list)
- return image_list, targets
- def normalize(self, image: Tensor) -> Tensor:
- if not image.is_floating_point():
- raise TypeError(
- f"Expected input images to be of floating type (in range [0, 1]), "
- f"but found type {image.dtype} instead"
- )
- dtype, device = image.dtype, image.device
- mean = torch.as_tensor(self.image_mean, dtype=dtype, device=device)
- std = torch.as_tensor(self.image_std, dtype=dtype, device=device)
- return (image - mean[:, None, None]) / std[:, None, None]
- def torch_choice(self, k: List[int]) -> int:
- """
- Implements `random.choice` via torch ops, so it can be compiled with
- TorchScript and we use PyTorch's RNG (not native RNG)
- """
- index = int(torch.empty(1).uniform_(0.0, float(len(k))).item())
- return k[index]
- def resize(
- self,
- image: Tensor,
- target: Optional[Dict[str, Tensor]] = None,
- ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
- h, w = image.shape[-2:]
- if self.training:
- if self._skip_resize:
- return image, target
- size = self.torch_choice(self.min_size)
- else:
- size = self.min_size[-1]
- image, target = _resize_image_and_masks(image, size, self.max_size, target, self.fixed_size)
- if target is None:
- return image, target
- bbox = target["boxes"]
- bbox = resize_boxes(bbox, (h, w), image.shape[-2:])
- target["boxes"] = bbox
- if "keypoints" in target:
- keypoints = target["keypoints"]
- keypoints = resize_keypoints(keypoints, (h, w), image.shape[-2:])
- target["keypoints"] = keypoints
- return image, target
- # _onnx_batch_images() is an implementation of
- # batch_images() that is supported by ONNX tracing.
- @torch.jit.unused
- def _onnx_batch_images(self, images: List[Tensor], size_divisible: int = 32) -> Tensor:
- max_size = []
- for i in range(images[0].dim()):
- max_size_i = torch.max(torch.stack([img.shape[i] for img in images]).to(torch.float32)).to(torch.int64)
- max_size.append(max_size_i)
- stride = size_divisible
- max_size[1] = (torch.ceil((max_size[1].to(torch.float32)) / stride) * stride).to(torch.int64)
- max_size[2] = (torch.ceil((max_size[2].to(torch.float32)) / stride) * stride).to(torch.int64)
- max_size = tuple(max_size)
- # work around for
- # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
- # which is not yet supported in onnx
- padded_imgs = []
- for img in images:
- padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
- padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
- padded_imgs.append(padded_img)
- return torch.stack(padded_imgs)
- def max_by_axis(self, the_list: List[List[int]]) -> List[int]:
- maxes = the_list[0]
- for sublist in the_list[1:]:
- for index, item in enumerate(sublist):
- maxes[index] = max(maxes[index], item)
- return maxes
- def batch_images(self, images: List[Tensor], size_divisible: int = 32) -> Tensor:
- if torchvision._is_tracing():
- # batch_images() does not export well to ONNX
- # call _onnx_batch_images() instead
- return self._onnx_batch_images(images, size_divisible)
- max_size = self.max_by_axis([list(img.shape) for img in images])
- stride = float(size_divisible)
- max_size = list(max_size)
- max_size[1] = int(math.ceil(float(max_size[1]) / stride) * stride)
- max_size[2] = int(math.ceil(float(max_size[2]) / stride) * stride)
- batch_shape = [len(images)] + max_size
- batched_imgs = images[0].new_full(batch_shape, 0)
- for i in range(batched_imgs.shape[0]):
- img = images[i]
- batched_imgs[i, : img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
- return batched_imgs
- def postprocess(
- self,
- result: List[Dict[str, Tensor]],
- image_shapes: List[Tuple[int, int]],
- original_image_sizes: List[Tuple[int, int]],
- ) -> List[Dict[str, Tensor]]:
- if self.training:
- return result
- for i, (pred, im_s, o_im_s) in enumerate(zip(result, image_shapes, original_image_sizes)):
- boxes = pred["boxes"]
- boxes = resize_boxes(boxes, im_s, o_im_s)
- result[i]["boxes"] = boxes
- if "masks" in pred:
- masks = pred["masks"]
- masks = paste_masks_in_image(masks, boxes, o_im_s)
- result[i]["masks"] = masks
- if "keypoints" in pred:
- keypoints = pred["keypoints"]
- keypoints = resize_keypoints(keypoints, im_s, o_im_s)
- result[i]["keypoints"] = keypoints
- return result
- def __repr__(self) -> str:
- format_string = f"{self.__class__.__name__}("
- _indent = "\n "
- format_string += f"{_indent}Normalize(mean={self.image_mean}, std={self.image_std})"
- format_string += f"{_indent}Resize(min_size={self.min_size}, max_size={self.max_size}, mode='bilinear')"
- format_string += "\n)"
- return format_string
- def resize_keypoints(keypoints: Tensor, original_size: List[int], new_size: List[int]) -> Tensor:
- ratios = [
- torch.tensor(s, dtype=torch.float32, device=keypoints.device)
- / torch.tensor(s_orig, dtype=torch.float32, device=keypoints.device)
- for s, s_orig in zip(new_size, original_size)
- ]
- ratio_h, ratio_w = ratios
- resized_data = keypoints.clone()
- if torch._C._get_tracing_state():
- resized_data_0 = resized_data[:, :, 0] * ratio_w
- resized_data_1 = resized_data[:, :, 1] * ratio_h
- resized_data = torch.stack((resized_data_0, resized_data_1, resized_data[:, :, 2]), dim=2)
- else:
- resized_data[..., 0] *= ratio_w
- resized_data[..., 1] *= ratio_h
- return resized_data
- def resize_boxes(boxes: Tensor, original_size: List[int], new_size: List[int]) -> Tensor:
- ratios = [
- torch.tensor(s, dtype=torch.float32, device=boxes.device)
- / torch.tensor(s_orig, dtype=torch.float32, device=boxes.device)
- for s, s_orig in zip(new_size, original_size)
- ]
- ratio_height, ratio_width = ratios
- xmin, ymin, xmax, ymax = boxes.unbind(1)
- xmin = xmin * ratio_width
- xmax = xmax * ratio_width
- ymin = ymin * ratio_height
- ymax = ymax * ratio_height
- return torch.stack((xmin, ymin, xmax, ymax), dim=1)
|