123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- import math
- from typing import List, Optional
- import torch
- from torch import nn, Tensor
- from .image_list import ImageList
- class AnchorGenerator(nn.Module):
- """
- Module that generates anchors for a set of feature maps and
- image sizes.
- The module support computing anchors at multiple sizes and aspect ratios
- per feature map. This module assumes aspect ratio = height / width for
- each anchor.
- sizes and aspect_ratios should have the same number of elements, and it should
- correspond to the number of feature maps.
- sizes[i] and aspect_ratios[i] can have an arbitrary number of elements,
- and AnchorGenerator will output a set of sizes[i] * aspect_ratios[i] anchors
- per spatial location for feature map i.
- Args:
- sizes (Tuple[Tuple[int]]):
- aspect_ratios (Tuple[Tuple[float]]):
- """
- __annotations__ = {
- "cell_anchors": List[torch.Tensor],
- }
- def __init__(
- self,
- sizes=((128, 256, 512),),
- aspect_ratios=((0.5, 1.0, 2.0),),
- ):
- super().__init__()
- if not isinstance(sizes[0], (list, tuple)):
- # TODO change this
- sizes = tuple((s,) for s in sizes)
- if not isinstance(aspect_ratios[0], (list, tuple)):
- aspect_ratios = (aspect_ratios,) * len(sizes)
- self.sizes = sizes
- self.aspect_ratios = aspect_ratios
- self.cell_anchors = [
- self.generate_anchors(size, aspect_ratio) for size, aspect_ratio in zip(sizes, aspect_ratios)
- ]
- # TODO: https://github.com/pytorch/pytorch/issues/26792
- # For every (aspect_ratios, scales) combination, output a zero-centered anchor with those values.
- # (scales, aspect_ratios) are usually an element of zip(self.scales, self.aspect_ratios)
- # This method assumes aspect ratio = height / width for an anchor.
- def generate_anchors(
- self,
- scales: List[int],
- aspect_ratios: List[float],
- dtype: torch.dtype = torch.float32,
- device: torch.device = torch.device("cpu"),
- ) -> Tensor:
- scales = torch.as_tensor(scales, dtype=dtype, device=device)
- aspect_ratios = torch.as_tensor(aspect_ratios, dtype=dtype, device=device)
- h_ratios = torch.sqrt(aspect_ratios)
- w_ratios = 1 / h_ratios
- ws = (w_ratios[:, None] * scales[None, :]).view(-1)
- hs = (h_ratios[:, None] * scales[None, :]).view(-1)
- base_anchors = torch.stack([-ws, -hs, ws, hs], dim=1) / 2
- return base_anchors.round()
- def set_cell_anchors(self, dtype: torch.dtype, device: torch.device):
- self.cell_anchors = [cell_anchor.to(dtype=dtype, device=device) for cell_anchor in self.cell_anchors]
- def num_anchors_per_location(self) -> List[int]:
- return [len(s) * len(a) for s, a in zip(self.sizes, self.aspect_ratios)]
- # For every combination of (a, (g, s), i) in (self.cell_anchors, zip(grid_sizes, strides), 0:2),
- # output g[i] anchors that are s[i] distance apart in direction i, with the same dimensions as a.
- def grid_anchors(self, grid_sizes: List[List[int]], strides: List[List[Tensor]]) -> List[Tensor]:
- anchors = []
- cell_anchors = self.cell_anchors
- torch._assert(cell_anchors is not None, "cell_anchors should not be None")
- torch._assert(
- len(grid_sizes) == len(strides) == len(cell_anchors),
- "Anchors should be Tuple[Tuple[int]] because each feature "
- "map could potentially have different sizes and aspect ratios. "
- "There needs to be a match between the number of "
- "feature maps passed and the number of sizes / aspect ratios specified.",
- )
- for size, stride, base_anchors in zip(grid_sizes, strides, cell_anchors):
- grid_height, grid_width = size
- stride_height, stride_width = stride
- device = base_anchors.device
- # For output anchor, compute [x_center, y_center, x_center, y_center]
- shifts_x = torch.arange(0, grid_width, dtype=torch.int32, device=device) * stride_width
- shifts_y = torch.arange(0, grid_height, dtype=torch.int32, device=device) * stride_height
- shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x, indexing="ij")
- shift_x = shift_x.reshape(-1)
- shift_y = shift_y.reshape(-1)
- shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)
- # For every (base anchor, output anchor) pair,
- # offset each zero-centered base anchor by the center of the output anchor.
- anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4))
- return anchors
- def forward(self, image_list: ImageList, feature_maps: List[Tensor]) -> List[Tensor]:
- grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
- image_size = image_list.tensors.shape[-2:]
- dtype, device = feature_maps[0].dtype, feature_maps[0].device
- strides = [
- [
- torch.empty((), dtype=torch.int64, device=device).fill_(image_size[0] // g[0]),
- torch.empty((), dtype=torch.int64, device=device).fill_(image_size[1] // g[1]),
- ]
- for g in grid_sizes
- ]
- self.set_cell_anchors(dtype, device)
- anchors_over_all_feature_maps = self.grid_anchors(grid_sizes, strides)
- anchors: List[List[torch.Tensor]] = []
- for _ in range(len(image_list.image_sizes)):
- anchors_in_image = [anchors_per_feature_map for anchors_per_feature_map in anchors_over_all_feature_maps]
- anchors.append(anchors_in_image)
- anchors = [torch.cat(anchors_per_image) for anchors_per_image in anchors]
- return anchors
- class DefaultBoxGenerator(nn.Module):
- """
- This module generates the default boxes of SSD for a set of feature maps and image sizes.
- Args:
- aspect_ratios (List[List[int]]): A list with all the aspect ratios used in each feature map.
- min_ratio (float): The minimum scale :math:`\text{s}_{\text{min}}` of the default boxes used in the estimation
- of the scales of each feature map. It is used only if the ``scales`` parameter is not provided.
- max_ratio (float): The maximum scale :math:`\text{s}_{\text{max}}` of the default boxes used in the estimation
- of the scales of each feature map. It is used only if the ``scales`` parameter is not provided.
- scales (List[float]], optional): The scales of the default boxes. If not provided it will be estimated using
- the ``min_ratio`` and ``max_ratio`` parameters.
- steps (List[int]], optional): It's a hyper-parameter that affects the tiling of default boxes. If not provided
- it will be estimated from the data.
- clip (bool): Whether the standardized values of default boxes should be clipped between 0 and 1. The clipping
- is applied while the boxes are encoded in format ``(cx, cy, w, h)``.
- """
- def __init__(
- self,
- aspect_ratios: List[List[int]],
- min_ratio: float = 0.15,
- max_ratio: float = 0.9,
- scales: Optional[List[float]] = None,
- steps: Optional[List[int]] = None,
- clip: bool = True,
- ):
- super().__init__()
- if steps is not None and len(aspect_ratios) != len(steps):
- raise ValueError("aspect_ratios and steps should have the same length")
- self.aspect_ratios = aspect_ratios
- self.steps = steps
- self.clip = clip
- num_outputs = len(aspect_ratios)
- # Estimation of default boxes scales
- if scales is None:
- if num_outputs > 1:
- range_ratio = max_ratio - min_ratio
- self.scales = [min_ratio + range_ratio * k / (num_outputs - 1.0) for k in range(num_outputs)]
- self.scales.append(1.0)
- else:
- self.scales = [min_ratio, max_ratio]
- else:
- self.scales = scales
- self._wh_pairs = self._generate_wh_pairs(num_outputs)
- def _generate_wh_pairs(
- self, num_outputs: int, dtype: torch.dtype = torch.float32, device: torch.device = torch.device("cpu")
- ) -> List[Tensor]:
- _wh_pairs: List[Tensor] = []
- for k in range(num_outputs):
- # Adding the 2 default width-height pairs for aspect ratio 1 and scale s'k
- s_k = self.scales[k]
- s_prime_k = math.sqrt(self.scales[k] * self.scales[k + 1])
- wh_pairs = [[s_k, s_k], [s_prime_k, s_prime_k]]
- # Adding 2 pairs for each aspect ratio of the feature map k
- for ar in self.aspect_ratios[k]:
- sq_ar = math.sqrt(ar)
- w = self.scales[k] * sq_ar
- h = self.scales[k] / sq_ar
- wh_pairs.extend([[w, h], [h, w]])
- _wh_pairs.append(torch.as_tensor(wh_pairs, dtype=dtype, device=device))
- return _wh_pairs
- def num_anchors_per_location(self) -> List[int]:
- # Estimate num of anchors based on aspect ratios: 2 default boxes + 2 * ratios of feaure map.
- return [2 + 2 * len(r) for r in self.aspect_ratios]
- # Default Boxes calculation based on page 6 of SSD paper
- def _grid_default_boxes(
- self, grid_sizes: List[List[int]], image_size: List[int], dtype: torch.dtype = torch.float32
- ) -> Tensor:
- default_boxes = []
- for k, f_k in enumerate(grid_sizes):
- # Now add the default boxes for each width-height pair
- if self.steps is not None:
- x_f_k = image_size[1] / self.steps[k]
- y_f_k = image_size[0] / self.steps[k]
- else:
- y_f_k, x_f_k = f_k
- shifts_x = ((torch.arange(0, f_k[1]) + 0.5) / x_f_k).to(dtype=dtype)
- shifts_y = ((torch.arange(0, f_k[0]) + 0.5) / y_f_k).to(dtype=dtype)
- shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x, indexing="ij")
- shift_x = shift_x.reshape(-1)
- shift_y = shift_y.reshape(-1)
- shifts = torch.stack((shift_x, shift_y) * len(self._wh_pairs[k]), dim=-1).reshape(-1, 2)
- # Clipping the default boxes while the boxes are encoded in format (cx, cy, w, h)
- _wh_pair = self._wh_pairs[k].clamp(min=0, max=1) if self.clip else self._wh_pairs[k]
- wh_pairs = _wh_pair.repeat((f_k[0] * f_k[1]), 1)
- default_box = torch.cat((shifts, wh_pairs), dim=1)
- default_boxes.append(default_box)
- return torch.cat(default_boxes, dim=0)
- def __repr__(self) -> str:
- s = (
- f"{self.__class__.__name__}("
- f"aspect_ratios={self.aspect_ratios}"
- f", clip={self.clip}"
- f", scales={self.scales}"
- f", steps={self.steps}"
- ")"
- )
- return s
- def forward(self, image_list: ImageList, feature_maps: List[Tensor]) -> List[Tensor]:
- grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
- image_size = image_list.tensors.shape[-2:]
- dtype, device = feature_maps[0].dtype, feature_maps[0].device
- default_boxes = self._grid_default_boxes(grid_sizes, image_size, dtype=dtype)
- default_boxes = default_boxes.to(device)
- dboxes = []
- x_y_size = torch.tensor([image_size[1], image_size[0]], device=default_boxes.device)
- for _ in image_list.image_sizes:
- dboxes_in_image = default_boxes
- dboxes_in_image = torch.cat(
- [
- (dboxes_in_image[:, :2] - 0.5 * dboxes_in_image[:, 2:]) * x_y_size,
- (dboxes_in_image[:, :2] + 0.5 * dboxes_in_image[:, 2:]) * x_y_size,
- ],
- -1,
- )
- dboxes.append(dboxes_in_image)
- return dboxes
|