123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 |
- import re
- from collections import OrderedDict
- from functools import partial
- from typing import Any, List, Optional, Tuple
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.utils.checkpoint as cp
- from torch import Tensor
- from ..transforms._presets import ImageClassification
- from ..utils import _log_api_usage_once
- from ._api import register_model, Weights, WeightsEnum
- from ._meta import _IMAGENET_CATEGORIES
- from ._utils import _ovewrite_named_param, handle_legacy_interface
- __all__ = [
- "DenseNet",
- "DenseNet121_Weights",
- "DenseNet161_Weights",
- "DenseNet169_Weights",
- "DenseNet201_Weights",
- "densenet121",
- "densenet161",
- "densenet169",
- "densenet201",
- ]
- class _DenseLayer(nn.Module):
- def __init__(
- self, num_input_features: int, growth_rate: int, bn_size: int, drop_rate: float, memory_efficient: bool = False
- ) -> None:
- super().__init__()
- self.norm1 = nn.BatchNorm2d(num_input_features)
- self.relu1 = nn.ReLU(inplace=True)
- self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)
- self.norm2 = nn.BatchNorm2d(bn_size * growth_rate)
- self.relu2 = nn.ReLU(inplace=True)
- self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)
- self.drop_rate = float(drop_rate)
- self.memory_efficient = memory_efficient
- def bn_function(self, inputs: List[Tensor]) -> Tensor:
- concated_features = torch.cat(inputs, 1)
- bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features))) # noqa: T484
- return bottleneck_output
- # todo: rewrite when torchscript supports any
- def any_requires_grad(self, input: List[Tensor]) -> bool:
- for tensor in input:
- if tensor.requires_grad:
- return True
- return False
- @torch.jit.unused # noqa: T484
- def call_checkpoint_bottleneck(self, input: List[Tensor]) -> Tensor:
- def closure(*inputs):
- return self.bn_function(inputs)
- return cp.checkpoint(closure, *input)
- @torch.jit._overload_method # noqa: F811
- def forward(self, input: List[Tensor]) -> Tensor: # noqa: F811
- pass
- @torch.jit._overload_method # noqa: F811
- def forward(self, input: Tensor) -> Tensor: # noqa: F811
- pass
- # torchscript does not yet support *args, so we overload method
- # allowing it to take either a List[Tensor] or single Tensor
- def forward(self, input: Tensor) -> Tensor: # noqa: F811
- if isinstance(input, Tensor):
- prev_features = [input]
- else:
- prev_features = input
- if self.memory_efficient and self.any_requires_grad(prev_features):
- if torch.jit.is_scripting():
- raise Exception("Memory Efficient not supported in JIT")
- bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
- else:
- bottleneck_output = self.bn_function(prev_features)
- new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
- if self.drop_rate > 0:
- new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
- return new_features
- class _DenseBlock(nn.ModuleDict):
- _version = 2
- def __init__(
- self,
- num_layers: int,
- num_input_features: int,
- bn_size: int,
- growth_rate: int,
- drop_rate: float,
- memory_efficient: bool = False,
- ) -> None:
- super().__init__()
- for i in range(num_layers):
- layer = _DenseLayer(
- num_input_features + i * growth_rate,
- growth_rate=growth_rate,
- bn_size=bn_size,
- drop_rate=drop_rate,
- memory_efficient=memory_efficient,
- )
- self.add_module("denselayer%d" % (i + 1), layer)
- def forward(self, init_features: Tensor) -> Tensor:
- features = [init_features]
- for name, layer in self.items():
- new_features = layer(features)
- features.append(new_features)
- return torch.cat(features, 1)
- class _Transition(nn.Sequential):
- def __init__(self, num_input_features: int, num_output_features: int) -> None:
- super().__init__()
- self.norm = nn.BatchNorm2d(num_input_features)
- self.relu = nn.ReLU(inplace=True)
- self.conv = nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)
- self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
- class DenseNet(nn.Module):
- r"""Densenet-BC model class, based on
- `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.
- Args:
- growth_rate (int) - how many filters to add each layer (`k` in paper)
- block_config (list of 4 ints) - how many layers in each pooling block
- num_init_features (int) - the number of filters to learn in the first convolution layer
- bn_size (int) - multiplicative factor for number of bottle neck layers
- (i.e. bn_size * k features in the bottleneck layer)
- drop_rate (float) - dropout rate after each dense layer
- num_classes (int) - number of classification classes
- memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
- but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
- """
- def __init__(
- self,
- growth_rate: int = 32,
- block_config: Tuple[int, int, int, int] = (6, 12, 24, 16),
- num_init_features: int = 64,
- bn_size: int = 4,
- drop_rate: float = 0,
- num_classes: int = 1000,
- memory_efficient: bool = False,
- ) -> None:
- super().__init__()
- _log_api_usage_once(self)
- # First convolution
- self.features = nn.Sequential(
- OrderedDict(
- [
- ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
- ("norm0", nn.BatchNorm2d(num_init_features)),
- ("relu0", nn.ReLU(inplace=True)),
- ("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
- ]
- )
- )
- # Each denseblock
- num_features = num_init_features
- for i, num_layers in enumerate(block_config):
- block = _DenseBlock(
- num_layers=num_layers,
- num_input_features=num_features,
- bn_size=bn_size,
- growth_rate=growth_rate,
- drop_rate=drop_rate,
- memory_efficient=memory_efficient,
- )
- self.features.add_module("denseblock%d" % (i + 1), block)
- num_features = num_features + num_layers * growth_rate
- if i != len(block_config) - 1:
- trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
- self.features.add_module("transition%d" % (i + 1), trans)
- num_features = num_features // 2
- # Final batch norm
- self.features.add_module("norm5", nn.BatchNorm2d(num_features))
- # Linear layer
- self.classifier = nn.Linear(num_features, num_classes)
- # Official init from torch repo.
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight)
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.Linear):
- nn.init.constant_(m.bias, 0)
- def forward(self, x: Tensor) -> Tensor:
- features = self.features(x)
- out = F.relu(features, inplace=True)
- out = F.adaptive_avg_pool2d(out, (1, 1))
- out = torch.flatten(out, 1)
- out = self.classifier(out)
- return out
- def _load_state_dict(model: nn.Module, weights: WeightsEnum, progress: bool) -> None:
- # '.'s are no longer allowed in module names, but previous _DenseLayer
- # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
- # They are also in the checkpoints in model_urls. This pattern is used
- # to find such keys.
- pattern = re.compile(
- r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$"
- )
- state_dict = weights.get_state_dict(progress=progress, check_hash=True)
- for key in list(state_dict.keys()):
- res = pattern.match(key)
- if res:
- new_key = res.group(1) + res.group(2)
- state_dict[new_key] = state_dict[key]
- del state_dict[key]
- model.load_state_dict(state_dict)
- def _densenet(
- growth_rate: int,
- block_config: Tuple[int, int, int, int],
- num_init_features: int,
- weights: Optional[WeightsEnum],
- progress: bool,
- **kwargs: Any,
- ) -> DenseNet:
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = DenseNet(growth_rate, block_config, num_init_features, **kwargs)
- if weights is not None:
- _load_state_dict(model=model, weights=weights, progress=progress)
- return model
- _COMMON_META = {
- "min_size": (29, 29),
- "categories": _IMAGENET_CATEGORIES,
- "recipe": "https://github.com/pytorch/vision/pull/116",
- "_docs": """These weights are ported from LuaTorch.""",
- }
- class DenseNet121_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/densenet121-a639ec97.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 7978856,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 74.434,
- "acc@5": 91.972,
- }
- },
- "_ops": 2.834,
- "_file_size": 30.845,
- },
- )
- DEFAULT = IMAGENET1K_V1
- class DenseNet161_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/densenet161-8d451a50.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 28681000,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 77.138,
- "acc@5": 93.560,
- }
- },
- "_ops": 7.728,
- "_file_size": 110.369,
- },
- )
- DEFAULT = IMAGENET1K_V1
- class DenseNet169_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/densenet169-b2777c0a.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 14149480,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 75.600,
- "acc@5": 92.806,
- }
- },
- "_ops": 3.36,
- "_file_size": 54.708,
- },
- )
- DEFAULT = IMAGENET1K_V1
- class DenseNet201_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/densenet201-c1103571.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "num_params": 20013928,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 76.896,
- "acc@5": 93.370,
- }
- },
- "_ops": 4.291,
- "_file_size": 77.373,
- },
- )
- DEFAULT = IMAGENET1K_V1
- @register_model()
- @handle_legacy_interface(weights=("pretrained", DenseNet121_Weights.IMAGENET1K_V1))
- def densenet121(*, weights: Optional[DenseNet121_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet:
- r"""Densenet-121 model from
- `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.
- Args:
- weights (:class:`~torchvision.models.DenseNet121_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.DenseNet121_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.DenseNet121_Weights
- :members:
- """
- weights = DenseNet121_Weights.verify(weights)
- return _densenet(32, (6, 12, 24, 16), 64, weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", DenseNet161_Weights.IMAGENET1K_V1))
- def densenet161(*, weights: Optional[DenseNet161_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet:
- r"""Densenet-161 model from
- `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.
- Args:
- weights (:class:`~torchvision.models.DenseNet161_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.DenseNet161_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.DenseNet161_Weights
- :members:
- """
- weights = DenseNet161_Weights.verify(weights)
- return _densenet(48, (6, 12, 36, 24), 96, weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", DenseNet169_Weights.IMAGENET1K_V1))
- def densenet169(*, weights: Optional[DenseNet169_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet:
- r"""Densenet-169 model from
- `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.
- Args:
- weights (:class:`~torchvision.models.DenseNet169_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.DenseNet169_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.DenseNet169_Weights
- :members:
- """
- weights = DenseNet169_Weights.verify(weights)
- return _densenet(32, (6, 12, 32, 32), 64, weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", DenseNet201_Weights.IMAGENET1K_V1))
- def densenet201(*, weights: Optional[DenseNet201_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet:
- r"""Densenet-201 model from
- `Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.
- Args:
- weights (:class:`~torchvision.models.DenseNet201_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.DenseNet201_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.DenseNet201_Weights
- :members:
- """
- weights = DenseNet201_Weights.verify(weights)
- return _densenet(32, (6, 12, 48, 32), 64, weights, progress, **kwargs)
|