123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 |
- from functools import partial
- from typing import Any, Callable, List, Optional, Sequence
- import torch
- from torch import nn, Tensor
- from torch.nn import functional as F
- from ..ops.misc import Conv2dNormActivation, Permute
- from ..ops.stochastic_depth import StochasticDepth
- from ..transforms._presets import ImageClassification
- from ..utils import _log_api_usage_once
- from ._api import register_model, Weights, WeightsEnum
- from ._meta import _IMAGENET_CATEGORIES
- from ._utils import _ovewrite_named_param, handle_legacy_interface
- __all__ = [
- "ConvNeXt",
- "ConvNeXt_Tiny_Weights",
- "ConvNeXt_Small_Weights",
- "ConvNeXt_Base_Weights",
- "ConvNeXt_Large_Weights",
- "convnext_tiny",
- "convnext_small",
- "convnext_base",
- "convnext_large",
- ]
- class LayerNorm2d(nn.LayerNorm):
- def forward(self, x: Tensor) -> Tensor:
- x = x.permute(0, 2, 3, 1)
- x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
- x = x.permute(0, 3, 1, 2)
- return x
- class CNBlock(nn.Module):
- def __init__(
- self,
- dim,
- layer_scale: float,
- stochastic_depth_prob: float,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- ) -> None:
- super().__init__()
- if norm_layer is None:
- norm_layer = partial(nn.LayerNorm, eps=1e-6)
- self.block = nn.Sequential(
- nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim, bias=True),
- Permute([0, 2, 3, 1]),
- norm_layer(dim),
- nn.Linear(in_features=dim, out_features=4 * dim, bias=True),
- nn.GELU(),
- nn.Linear(in_features=4 * dim, out_features=dim, bias=True),
- Permute([0, 3, 1, 2]),
- )
- self.layer_scale = nn.Parameter(torch.ones(dim, 1, 1) * layer_scale)
- self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
- def forward(self, input: Tensor) -> Tensor:
- result = self.layer_scale * self.block(input)
- result = self.stochastic_depth(result)
- result += input
- return result
- class CNBlockConfig:
- # Stores information listed at Section 3 of the ConvNeXt paper
- def __init__(
- self,
- input_channels: int,
- out_channels: Optional[int],
- num_layers: int,
- ) -> None:
- self.input_channels = input_channels
- self.out_channels = out_channels
- self.num_layers = num_layers
- def __repr__(self) -> str:
- s = self.__class__.__name__ + "("
- s += "input_channels={input_channels}"
- s += ", out_channels={out_channels}"
- s += ", num_layers={num_layers}"
- s += ")"
- return s.format(**self.__dict__)
- class ConvNeXt(nn.Module):
- def __init__(
- self,
- block_setting: List[CNBlockConfig],
- stochastic_depth_prob: float = 0.0,
- layer_scale: float = 1e-6,
- num_classes: int = 1000,
- block: Optional[Callable[..., nn.Module]] = None,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- **kwargs: Any,
- ) -> None:
- super().__init__()
- _log_api_usage_once(self)
- if not block_setting:
- raise ValueError("The block_setting should not be empty")
- elif not (isinstance(block_setting, Sequence) and all([isinstance(s, CNBlockConfig) for s in block_setting])):
- raise TypeError("The block_setting should be List[CNBlockConfig]")
- if block is None:
- block = CNBlock
- if norm_layer is None:
- norm_layer = partial(LayerNorm2d, eps=1e-6)
- layers: List[nn.Module] = []
- # Stem
- firstconv_output_channels = block_setting[0].input_channels
- layers.append(
- Conv2dNormActivation(
- 3,
- firstconv_output_channels,
- kernel_size=4,
- stride=4,
- padding=0,
- norm_layer=norm_layer,
- activation_layer=None,
- bias=True,
- )
- )
- total_stage_blocks = sum(cnf.num_layers for cnf in block_setting)
- stage_block_id = 0
- for cnf in block_setting:
- # Bottlenecks
- stage: List[nn.Module] = []
- for _ in range(cnf.num_layers):
- # adjust stochastic depth probability based on the depth of the stage block
- sd_prob = stochastic_depth_prob * stage_block_id / (total_stage_blocks - 1.0)
- stage.append(block(cnf.input_channels, layer_scale, sd_prob))
- stage_block_id += 1
- layers.append(nn.Sequential(*stage))
- if cnf.out_channels is not None:
- # Downsampling
- layers.append(
- nn.Sequential(
- norm_layer(cnf.input_channels),
- nn.Conv2d(cnf.input_channels, cnf.out_channels, kernel_size=2, stride=2),
- )
- )
- self.features = nn.Sequential(*layers)
- self.avgpool = nn.AdaptiveAvgPool2d(1)
- lastblock = block_setting[-1]
- lastconv_output_channels = (
- lastblock.out_channels if lastblock.out_channels is not None else lastblock.input_channels
- )
- self.classifier = nn.Sequential(
- norm_layer(lastconv_output_channels), nn.Flatten(1), nn.Linear(lastconv_output_channels, num_classes)
- )
- for m in self.modules():
- if isinstance(m, (nn.Conv2d, nn.Linear)):
- nn.init.trunc_normal_(m.weight, std=0.02)
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- def _forward_impl(self, x: Tensor) -> Tensor:
- x = self.features(x)
- x = self.avgpool(x)
- x = self.classifier(x)
- return x
- def forward(self, x: Tensor) -> Tensor:
- return self._forward_impl(x)
- def _convnext(
- block_setting: List[CNBlockConfig],
- stochastic_depth_prob: float,
- weights: Optional[WeightsEnum],
- progress: bool,
- **kwargs: Any,
- ) -> ConvNeXt:
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = ConvNeXt(block_setting, stochastic_depth_prob=stochastic_depth_prob, **kwargs)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
- _COMMON_META = {
- "min_size": (32, 32),
- "categories": _IMAGENET_CATEGORIES,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#convnext",
- "_docs": """
- These weights improve upon the results of the original paper by using a modified version of TorchVision's
- `new training recipe
- <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
- """,
- }
- class ConvNeXt_Tiny_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/convnext_tiny-983f1562.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=236),
- meta={
- **_COMMON_META,
- "num_params": 28589128,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 82.520,
- "acc@5": 96.146,
- }
- },
- "_ops": 4.456,
- "_file_size": 109.119,
- },
- )
- DEFAULT = IMAGENET1K_V1
- class ConvNeXt_Small_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/convnext_small-0c510722.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=230),
- meta={
- **_COMMON_META,
- "num_params": 50223688,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 83.616,
- "acc@5": 96.650,
- }
- },
- "_ops": 8.684,
- "_file_size": 191.703,
- },
- )
- DEFAULT = IMAGENET1K_V1
- class ConvNeXt_Base_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/convnext_base-6075fbad.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 88591464,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 84.062,
- "acc@5": 96.870,
- }
- },
- "_ops": 15.355,
- "_file_size": 338.064,
- },
- )
- DEFAULT = IMAGENET1K_V1
- class ConvNeXt_Large_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/convnext_large-ea097f82.pth",
- transforms=partial(ImageClassification, crop_size=224, resize_size=232),
- meta={
- **_COMMON_META,
- "num_params": 197767336,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 84.414,
- "acc@5": 96.976,
- }
- },
- "_ops": 34.361,
- "_file_size": 754.537,
- },
- )
- DEFAULT = IMAGENET1K_V1
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ConvNeXt_Tiny_Weights.IMAGENET1K_V1))
- def convnext_tiny(*, weights: Optional[ConvNeXt_Tiny_Weights] = None, progress: bool = True, **kwargs: Any) -> ConvNeXt:
- """ConvNeXt Tiny model architecture from the
- `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.
- Args:
- weights (:class:`~torchvision.models.convnext.ConvNeXt_Tiny_Weights`, optional): The pretrained
- weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Tiny_Weights`
- below for more details and possible values. By default, no pre-trained weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ConvNeXt_Tiny_Weights
- :members:
- """
- weights = ConvNeXt_Tiny_Weights.verify(weights)
- block_setting = [
- CNBlockConfig(96, 192, 3),
- CNBlockConfig(192, 384, 3),
- CNBlockConfig(384, 768, 9),
- CNBlockConfig(768, None, 3),
- ]
- stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.1)
- return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ConvNeXt_Small_Weights.IMAGENET1K_V1))
- def convnext_small(
- *, weights: Optional[ConvNeXt_Small_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ConvNeXt:
- """ConvNeXt Small model architecture from the
- `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.
- Args:
- weights (:class:`~torchvision.models.convnext.ConvNeXt_Small_Weights`, optional): The pretrained
- weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Small_Weights`
- below for more details and possible values. By default, no pre-trained weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ConvNeXt_Small_Weights
- :members:
- """
- weights = ConvNeXt_Small_Weights.verify(weights)
- block_setting = [
- CNBlockConfig(96, 192, 3),
- CNBlockConfig(192, 384, 3),
- CNBlockConfig(384, 768, 27),
- CNBlockConfig(768, None, 3),
- ]
- stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.4)
- return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ConvNeXt_Base_Weights.IMAGENET1K_V1))
- def convnext_base(*, weights: Optional[ConvNeXt_Base_Weights] = None, progress: bool = True, **kwargs: Any) -> ConvNeXt:
- """ConvNeXt Base model architecture from the
- `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.
- Args:
- weights (:class:`~torchvision.models.convnext.ConvNeXt_Base_Weights`, optional): The pretrained
- weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Base_Weights`
- below for more details and possible values. By default, no pre-trained weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ConvNeXt_Base_Weights
- :members:
- """
- weights = ConvNeXt_Base_Weights.verify(weights)
- block_setting = [
- CNBlockConfig(128, 256, 3),
- CNBlockConfig(256, 512, 3),
- CNBlockConfig(512, 1024, 27),
- CNBlockConfig(1024, None, 3),
- ]
- stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5)
- return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", ConvNeXt_Large_Weights.IMAGENET1K_V1))
- def convnext_large(
- *, weights: Optional[ConvNeXt_Large_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> ConvNeXt:
- """ConvNeXt Large model architecture from the
- `A ConvNet for the 2020s <https://arxiv.org/abs/2201.03545>`_ paper.
- Args:
- weights (:class:`~torchvision.models.convnext.ConvNeXt_Large_Weights`, optional): The pretrained
- weights to use. See :class:`~torchvision.models.convnext.ConvNeXt_Large_Weights`
- below for more details and possible values. By default, no pre-trained weights are used.
- progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.convnext.ConvNext``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.ConvNeXt_Large_Weights
- :members:
- """
- weights = ConvNeXt_Large_Weights.verify(weights)
- block_setting = [
- CNBlockConfig(192, 384, 3),
- CNBlockConfig(384, 768, 3),
- CNBlockConfig(768, 1536, 27),
- CNBlockConfig(1536, None, 3),
- ]
- stochastic_depth_prob = kwargs.pop("stochastic_depth_prob", 0.5)
- return _convnext(block_setting, stochastic_depth_prob, weights, progress, **kwargs)
|