123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- from functools import partial
- from typing import Any, Optional
- import torch
- import torch.nn as nn
- from ..transforms._presets import ImageClassification
- from ..utils import _log_api_usage_once
- from ._api import register_model, Weights, WeightsEnum
- from ._meta import _IMAGENET_CATEGORIES
- from ._utils import _ovewrite_named_param, handle_legacy_interface
- __all__ = ["AlexNet", "AlexNet_Weights", "alexnet"]
- class AlexNet(nn.Module):
- def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None:
- super().__init__()
- _log_api_usage_once(self)
- self.features = nn.Sequential(
- nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=3, stride=2),
- nn.Conv2d(64, 192, kernel_size=5, padding=2),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=3, stride=2),
- nn.Conv2d(192, 384, kernel_size=3, padding=1),
- nn.ReLU(inplace=True),
- nn.Conv2d(384, 256, kernel_size=3, padding=1),
- nn.ReLU(inplace=True),
- nn.Conv2d(256, 256, kernel_size=3, padding=1),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=3, stride=2),
- )
- self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
- self.classifier = nn.Sequential(
- nn.Dropout(p=dropout),
- nn.Linear(256 * 6 * 6, 4096),
- nn.ReLU(inplace=True),
- nn.Dropout(p=dropout),
- nn.Linear(4096, 4096),
- nn.ReLU(inplace=True),
- nn.Linear(4096, num_classes),
- )
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x = self.features(x)
- x = self.avgpool(x)
- x = torch.flatten(x, 1)
- x = self.classifier(x)
- return x
- class AlexNet_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/alexnet-owt-7be5be79.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- "num_params": 61100840,
- "min_size": (63, 63),
- "categories": _IMAGENET_CATEGORIES,
- "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg",
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 56.522,
- "acc@5": 79.066,
- }
- },
- "_ops": 0.714,
- "_file_size": 233.087,
- "_docs": """
- These weights reproduce closely the results of the paper using a simplified training recipe.
- """,
- },
- )
- DEFAULT = IMAGENET1K_V1
- @register_model()
- @handle_legacy_interface(weights=("pretrained", AlexNet_Weights.IMAGENET1K_V1))
- def alexnet(*, weights: Optional[AlexNet_Weights] = None, progress: bool = True, **kwargs: Any) -> AlexNet:
- """AlexNet model architecture from `One weird trick for parallelizing convolutional neural networks <https://arxiv.org/abs/1404.5997>`__.
- .. note::
- AlexNet was originally introduced in the `ImageNet Classification with
- Deep Convolutional Neural Networks
- <https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>`__
- paper. Our implementation is based instead on the "One weird trick"
- paper above.
- Args:
- weights (:class:`~torchvision.models.AlexNet_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.AlexNet_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.squeezenet.AlexNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.AlexNet_Weights
- :members:
- """
- weights = AlexNet_Weights.verify(weights)
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = AlexNet(**kwargs)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
|